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ABSTRACT

Earth observation Low Earth Orbit (LEO) satellites collect
enormous amounts of data that needs to be transferred first
to ground stations and then to the cloud, for storage and pro-
cessing. Satellites today transmit data greedily to ground sta-
tions, with full utilization of bandwidth during each contact
period. We show that due to the layout of ground stations and
orbital characteristics, this approach overloads some ground
stations and underloads others, leading to lost throughput
and large end-to-end latency for images. We present a new
end-to-end scheduler system called Umbra, which plans
transfers from large satellite constellations through ground
stations to the cloud, by accounting for both spatial and tem-
poral factors, i.e., orbital dynamics, bandwidth constraints,
and queue sizes. At the heart of Umbra is a new class of
scheduling algorithms called withhold scheduling, wherein
the sender (i.e., satellite) selectively under-utilizes some links
to ground stations. We show that Umbra’s counter-intuitive
approach increases throughput by 13-31% & reduces P90
latency by 3-6 X.
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Figure 1: LEO Satellite Constellations. Earth observation
satellites operate in polar low Earth orbits (around 1.5 hours
per orbit). As the Earth rotates under them, they scan different
parts of the Earth in every orbit. (Right) A LEO satellite motion
(Planet Dove [37]) over 3 hours (blue to red) waiting to come
in contact with the ground station (green) to transfer data.

2-6, 2023, Madrid, Spain. ACM, New York, NY, USA, 15 pages. https:
//doi.org/lO.l145/3570361.3592521

1 INTRODUCTION

The current generation of Low Earth Orbit (LEO) satellite
constellations is a unique new class of mobile networking
systems characterized by scale and spatio-temporal dynam-
ics. Advancements in technology over the last decade have
led to a five-fold increase in the number of LEO satellites
in orbit [42]. Many companies [1, 14] launched constella-
tions containing hundreds of satellites to perform frequent
high-resolution monitoring of Earth. These satellites rotate
around the Earth in low orbits (< 1000 km above Earth) and
track planet-scale events. Just during 2021-22, LEO constel-
lations were used to monitor the war in Ukraine [48], the
Tonga volcanic eruption [18], and California forest fires [8].

Each satellite generates approximately one Terabyte of
data per day. A satellite communicates this massive data to
the cloud (for analysis and distribution of Earth imagery) via
multiple (fixed) ground stations located thousands of Kilome-
ters away on Earth. This data transfer problem is challenging
due to the scale of the imagery and the temporal and spa-
tial challenges, which arise from natural orbital dynamics
of LEO satellites (see Fig. 1), and uneven layout of ground
stations. The contact between a satellite and a ground station
is short-lived: four to six ten-minute windows per day per
satellite-ground station pair. In order to reduce interference
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from ambient signals and blockages and to increase the num-
ber of satellite-ground station contacts , ground stations are
typically located in remote regions, e.g., closer to the poles,
and away from large populations. This limits the backhaul
bandwidth from the ground station to the cloud. Due to these
factors getting data from satellites to the cloud suffers from
day-level delays.
This paper makes the following contributions:

e We discover a new phenomenon that we call Uneven
Queuing Effect or UQE (pronounced “You-k”), wherein the
prevalent strategy of greedy full-utilization data transfer
from satellites to ground stations, is creating load imbal-
ance across ground stations and leading to sub-optimal
end-to-end throughput and latency, all due to temporal
and spatial reasons.

e We propose withhold scheduling, a new class of satellite-
ground station transfer algorithms, for LEO constella-
tions.

e We build the Umbra data transfer system, where we de-
sign, implement, and evaluate a new withhold scheduling
algorithm based on time-expanded networks.

e We perform a large scale trace-driven simulation using
data collected from a real 153-satellite constellation.

1.1 Uneven Queuing Effect (UQE)

Due to orbital dynamics, a satellite moves past a ground
station receiver in less than ten minutes. Therefore, the con-
ventional wisdom in satellite networks has been to transmit
data greedily (or “fast”), i.e., send as much data as possible to
a ground station during its contact, using the full available
bandwidth. Naturally, a bulk of past work focuses on improv-
ing the radio design at the satellite and the ground stations
so that they can maximize the amount of data transfer during
the short contacts [12, 13, 41]. This line of work has made
great progress, and today, even small cubesats in low earth
orbits can achieve Gbps links to Earth [13].

With these advances in satellite-ground links, the sta-
tus quo “fast” transmission style for data from satellites to
ground stations leads to long outgoing queues (to the cloud)
at some ground stations, and relatively shorter queues and
thus idling, at other ground stations. This arises from two rea-
sons. First, ground stations have an uneven (heterogeneous)
spatial distribution, due to logistical reasons involving spec-
trum licensing, country-wise regulations, proximity to poles,
etc. This means that the amount of new data that a satel-
lite has in between its consecutive ground station contacts
may vary widely, and lead to unbalanced queues at ground
stations.
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We term this new phenomenon we discovered as the Un-
even Queuing Effect or UQE!. Fig. 2a shows an example of
UQE. The shown satellite passes over consecutive ground
stations A, B, and C. However the A-B distance is longer than
the B-C distance. This means the satellite collects far more
data during its A-B segment than its B-C segment. Greedy
transfer means B would receive 9 GB from the satellite, while
C would receive only 1 GB. Thus, UQE leads to unbalanced
queues at B vs. C.

The UQE problem is further exacerbated because different
ground stations can have different backhaul bandwidths to
the cloud, from 100s of Mbps to a few Gbps. This means
that outgoing queue lengths at ground stations can wildly
vary across time and space. Therefore, images stuck at high
queue, low bandwidth stations experience large delays. This
situation is worsening as more compute resources are be-
ing added to ground stations for “edge”-style processing,
which further exaggerates the problem of load imbalance
due to both network delays and computational delays, both
of which could be imbalanced. Therefore, even if backhaul
bandwidths increase in the future, UQE will continue to back
up queues.

Fig. 3 shows UQE causes idling at some ground stations
and uneven egress throughput at the cloud in the greedy
approach (“Baseline”), while our system (“Umbra”, described
soon) offers stable throughput. Section 3.3 formally proves
that UQE causes quadratic growth in Greedy’s queues.

1.2 Withhold Scheduling

To counter UQE, we define a new scheduling paradigm for
satellite data transfers called withhold scheduling. The key
idea in withhold scheduling is to allow a satellite to selec-
tively under-utilize a subset of its ground station contacts and
intelligently withhold data for subsequent links if it identifies
an opportunity for a better end-to-end latency in the future.
Withhold scheduling aims to equalize queue sizes across
ground stations and leads to higher throughput and lower
latency for the transfer of satellite data to the cloud. Return-
ing to Fig. 2a, if the satellite were to intelligently withhold 4
GB of data from B, this would equalize data transferred to B
and C. If on the other hand, C had a 1.5 X higher backhaul
bandwidth (i.e., to the cloud) than B, transferring 4 GB to B
and 6 GB to C would be preferable.

Withhold scheduling needs to tell each satellite: When
to withhold, and How much to withhold. This is complex
because any decision to withhold data needs to account
for both spatial factors and temporal factors. Spatial factors
include the relative positions of satellites and ground stations.

IThe UQE effect is analogous to the Waiting Time Paradox in networks and
public transport [2]. For instance, with uneven bus arrivals, the average
waiting time is greater than 50% of the average interarrival gap.



Transmitting, Fast and Slow: Scheduling Satellite Traffic through Space and Time

\ 9 GB data

downlinked from
& time = t + 4 min

Met + 4.5 min

X \

Gsc \

(@

sat to GS B
1 GB data

downlinked from

sat to GS C

ACM MobiCom ’23, October 2-6, 2023, Madrid, Spain

X nE
X No W
X
X X
*
e
*

(b)

Figure 2: LEO Satellite Orbits and Load Imbalance. (a) Uneven Spatial layout of ground stations leads to different “new”
data sizes abvailable at a satellite during the next ground station contact. (b) Umbra needs to reason about such factors for a large
number of satellites moving around the Earth. The figure shows a snapshot of 70 Planet Dove [37] satellites with motion traces for

10 of them over a 10 minute window.
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Figure 3: Cloud Ingress Timeline: Greedy (Baseline) vs. Umbra.

Temporal factors for withhold scheduling include: (a) the
evolution of this link quality and visibility over time due
to the orbital motion of the satellite, and (b) the queue size
variation at ground stations. Furthermore, any decision made
by a satellite (say, X) to withhold data in a time slot has
multiple downstream effects: (i) a different satellite (say, Y)
may choose to use this slot to transfer data to the same
ground station, (ii) satellite X now needs a slot in the future
at a different ground station (and with increased urgency).

Withhold Scheduling via Time Expanded Networks:
We formulate the spatial and temporal factors uniquely us-
ing a time expanded network (or TEN). This allows us to
capture spatial factors, like connections between satellites,
ground stations and cloud, via a graph representation at each
instance of time. Further, we also add holdover edges from
a vertex to itself in the future, signifying the possibility of
the vertex (satellite) withholding outgoing data in spite of
available bandwidth. Any withhold scheduling algorithm or
heuristic can be captured via this TEN.
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Given this TEN network, we design a polynomial-time
algorithm that combines bipartite matching, max flow, and
binary search. We also compare our approach against simpler
heuristics. Time expanded networks have been used to plan
flows in the internet [16, 17], and in sneakernets [7]. Our
work is the first to adapt them for satellite data transfers.

We build Umbra, a new system for scheduling data trans-
fers from satellite constellations to the cloud via ground
stations. Umbra accounts for the dynamics of satellite mo-
tion, back-end bandwidth constraints of ground stations, and
queue sizes at ground stations. We implement the Umbra
scheduler, and our trace-driven evaluation uses 6 million
images captured by the Planet Dove constellation [37] com-
prising 153 satellites’ trajectories and collected across 15
days. This data is the real set of images collected by the con-
stellation. We simulate the orbital dynamics of the satellites
and a ground station layout by using Planet’s published and
frequently updated orbital information [25, 29]. Our paper
is, to the best of our knowledge, the largest evaluation per-
formed using data collected by a real operational satellite
constellation. Our evaluation shows that the Umbra sched-
uler can improve the satellite constellation’s throughput of
by 13-31% and 90th percentile latency by 3-6Xx compared to
a greedy baseline and a heuristic-based scheduler.

2 SATELLITE NETWORKING PRIMER

There are nearly 5000 satellites in orbit today, up by 5x com-
pared to a decade ago [42]. The increase has been driven by
reduced cost of designing and launching hardware for small
satellites (e.g., “shoebox-sized” cubesats). A single rocket can
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launch multiple such satellites using rideshare agreements
that amortize cost.

Satellite Orbits: Emerging LEO constellations for earth
observation typically operate in polar orbits around 500 km
above the Earth. A given satellite may return to the same
location above Earth only every six to twelve days. Satel-
lite operators—e.g., Planet Inc. [14], and Spire [1])—deploy
large-scale constellations comprising hundreds of satellites
to increase imaging frequency to multiple images per day.
This is in contrast to traditional earth observation constella-
tions that have only a few satellites, e.g., 2 satellites in the
European Space Agency’s Sentinel 2 [15].

A satellite’s location with respect to Earth is reasonably
predictable using Two Line Element (TLE) orbit descriptors
published at regular intervals by multiple agencies such as
Celestrak [29]. This means that the satellite-ground station
contact time points are predictable and we use these as an
input for scheduling. Past work [44] has also demonstrated
the ability to predict the radio link quality across time.

Imaging Equipment and Data Volume: Earth observation
satellites capture images of Earth in different parts of the
frequency spectrum, e.g., RGB, Radio Waves, Infrared, etc.
The multi-spectral imagery as well as the high resolution are
responsible for high volumes of data transfer from satellite
to Earth. The Dove constellation captures 120 TB of data per
day on average, in our evaluation period.

Ground Station Design: The satellite to ground station
link is a high frequency link (e.g., X-band 8-10 GHz) with
downlink bandwidths of up to 2 Gbps and uplinks of a few
Kbps [13]. Bandwidth varies as a function of distance be-
tween satellites and ground stations during a contact period,
and across contact periods. A single ground antenna can only
talk to one satellite at a time. However, a satellite operator
may deploy multiple antennas at the ground station, with
each antenna talking to an independent satellite. We assume
that satellites cannot communicate amongst each other, i.e.,
there are no inter-satellite links (this is true for all major
LEO constellations today).

The ground station locations are selected using several
constraints such as land availability, spectrum licensing re-
quirements, lack of interference, orbital calculations, etc. The
ground stations transfer data to the cloud using a backhaul
link. The quality of the backhaul connection depends on
the location of the ground station and can vary from 100s
of Mbps to a few Gbps. This bandwidth is relatively sta-
ble across time (as opposed to the satellite-ground station
bandwidth which varies due to orbital motion). While there
is scant public information about the nature of these links,
the range of 100s of Mbps to a few Gbps is consistent with
anecdotal evidence based on both our conversations with
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satellite operators and public statements by ground station
operators [38].

Data Download Process: The images collected by a satel-
lite arrive at the cloud endpoints via two stages: satellite to
ground station first, and then ground station to cloud. Each
stage incurs hour-level latencies today. For the first step, the
access to a ground station is the key bottleneck, i.e. a satellite
must wait till its orbit brings it near a ground station, before
it can transfer data. For the second step, the backhaul con-
nectivity (to the cloud) is a bottleneck, especially for ground
stations that are remote and/or get disproportionately high
amount of data from satellites.

Assumptions: In this paper, we assume that (a) satellites
cannot send data to each other directly. This is true for all
major LEO earth observation satellite constellations today;
(b) ground stations cannot send data to each other either,
which is because ground station-ground station communi-
cation would consume the same bandwidth (to the Internet)
that the ground station could use to communicate to the
cloud and (c) ground stations are not shared across multiple
applications Nevertheless, we believe our withhold schedul-
ing algorithms generalize to any topology that relaxes these
assumptions. We also discuss these relaxations at the end of
the paper.

3 WITHHOLD SCHEDULING IN UMBRA

In scheduling the transfer of satellite data to ground stations
and then to the cloud, the key decisions that a withhold
scheduling algorithm needs to make are: (a) Should a satellite
withhold any data during a given contact? and (b) (if yes)
How much data should it withhold? The decisions depend
on the following factors:

e Orbital Motion of Satellites: This defines feasibility,
quality, and duration of contact with ground stations in
the future. One important factor is the predictable orbital
motion of each satellite, i.e., the sequence and timing of
ground station contacts are known. However link quality
may vary—if it is going to be weak in the future, it may
not be optimal to withhold a large amount of data.

e Contention for Ground Station Time: Ground sta-
tions are typically fewer (10s) than the number of satel-
lites (100s). Thus multiple satellites may contend for the
same ground station. Fach ground station may have mul-
tiple antennas, but only one antenna can talk to a satellite
at a time, and vice-versa, i.e., a one-to-one mapping.

e Traffic Pattern Evolution at Ground Stations: Queue
sizes evolve over time at different ground stations. For
instance, if several satellites decide to withhold data at a
given ground station, this ground station may become
idle, while subsequent ground stations build long queues.
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Figure 4: Umbra’s Time Expanded Network. Umbra
formulates the withhold scheduling problem as a time expanded
network.

3.1 Time Expanded Network Formulation

We formulate the satellite data transfer problem over space
and time, as a time expanded network [7, 16, 17], or briefly
a TEN. Because of the predictable orbits of each satellite,
any transfer strategy can be specified within a TEN. Given
snapshots of the network at different time instances, our TEN
creates holdover edges between time instances of a given
node, signifying the node’s ability to withhold data.

Fig. 4 shows an example TEN graph evolving in time as
satellites move. Each snapshot (or layer, or time) represents
a time duration during which those satellite-ground station
contacts are possible. The bipartite graph at each time is
the set of possible satellite-ground station contacts during
that time. The horizontal lines across layers are the holdover
edges. To solve the transfer problem, the key needs are thus:
i) to select from each (layer’s) bipartite graph a one to one
matching of satellites to ground stations, and ii) at each satel-
lite, to decide how much data to transmit along a downlink
vs. to itself via a holdover edge.

Formulation: Formally, denote the set of satellites as
SAT = {s1,s2,...,sn}. Each satellite, s; captures imagery
over time and generates new data p;(t) at time duration ¢.
Time units are of fixed duration. We include an imaginary
source node with an edge of capacity p;(¢) from the source to
satellite, s; to denote this data capture process. The data vol-
ume from the source to a satellite varies over time because:
(a) earth imagery satellites do not always image over water
(e.g., large oceans), and (b) a satellite may use (atmospheric)
cloud detection to reject obscured imagery.

Next, the set of ground stations is GS = {g1,92,...,9n}-
We also add a single sink vertex denoting the cloud. Each g;
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has a pre-configured egress bandwidth b;(t), t = 1,2,...,T
to the cloud vertex. We use the predictable, pre-computed
orbit of the satellites, and the positions of the ground stations
to estimate the bandwidth of each satellite-ground station
link. We denote as b, 4, (t) the bandwidth at time ¢ between
satellite s; and ground station g;. Thus by, 4, () is the capacity
tagged on the s; — g; edge of the bipartite graph at time
t. We set the capacity of the holdover edges to co. This is
reasonable because typical satellites have storage of multiple
TBs (2 TBs in Planet’s Dove [12], sufficient to hold multiple
days of data, far exceeding inter-contact durations.

Our goal is to compute a data transmission plan, which can
be formulated as a matrix D; ;(t), representing the amount
of data satellite s; downlinks to ground station g; at time .
D is subject to the following constraints:

o A satellite communicates with at most one ground station
at a time: Vt, i, j1 # jo, Di,jl(t) =0V Di,jz(t) =0.

e A ground station communicates with at most one satel-
lite at a time: Vt,i; # i, J, Dil,j(t) =0V Diz,j(t) = 0.
(Generalizable to multiple antennas per ground station.)

o A satellite’s transfer speed cannot exceed downlink band-
Wldth Vt, i, j, Di,j(t) < bsi,gj(t)~

e A satellite cannot transmit more data than it collects:

t

Vt, i, Z >, Di,j(T) < zillpi(‘[').

Jj =1
Each ground station always utilizes its full bandwidth to
upload the images to a cloud service. Therefore, the upload
amount u;(t) for ground station g; (to the cloud) at time ¢ is:

t-1

t
u;(t) = max Z ZD,"J-(T) - Z u;(r),b;(t)
1

i 7= =1

Optimization Objective: Mathematically, our objective is
to maximize the end-to-end throughput for the data transfer
process from the satellite to the cloud:

D = argm[e)lxz Z u; (1)
i1

Example: Fig. 5a shows a simple example with one satellite
and 2 ground stations X and Y. X has a lower backhaul (cloud)
bandwidth than Y. For simplicity, we expand the graph to
only 3 time steps. The weight on each edge represents its
capacity per time unit. Infinite weights on holdover (blue)
edges show infinite storage at satellite and ground stations.

Fig. 5b shows the traditional fast (greedy) approach: at
time ¢, the satellite connects to ground station X to max-
imize its downlink and sends 4 units of data. At time ¢, it
maintains that connection and sends an additional 4 units of
data. However, note that this leads to queue build up at the
ground station since its bandwidth to the cloud is limited.
This causes increasing values on the temporal (holdover)

(1)
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Satellite
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Satellite

(c) Optimal Withhold Scheduling

Figure 5: Time Expanded Network (TEN) Example, with
Greedy Result, and Optimal Result. (a) Example time-
expanded network with 1 satellite and 2 ground stations, (b)
Greedy solution that transfers 7 data units, (c) Optimal (with-
holding) solution that transfers 11 data units.

edges for this ground station. Overall, this approach trans-
fers 7 units of data. 5 data units remain at X, un-transferred.

Fig. 5¢ shows the optimal strategy (by withholding). At
time t, the satellite decides to withhold 1 unit of data, thus
under-utilizing its link to X. At time t,, the satellite transmits
5 units of data (4 units of new data and 1 unit of withheld data)
to Y. Crucially, the satellite picks Y because of its stronger
backhaul link, even though the satellite has a stronger link
to X. At 13, the satellite transmits the usual 4 units. The
single unit of withholding from t; to t, increases the total data
transferred in 3 time units to 11 units of data (vs. 7 data units
under greedy). Only 1 data unit remains at Y, un-transferred.

The key insight is that transferring more data to ground
stations with better backhaul links may be preferable, in
spite of the delay incurred by withholding data.

3.2 Scheduling Algorithm

Our scheduling algorithm needs to make some “hard” se-
lections and some soft selections. Hard selections matches
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satellites with ground stations to transmit to. This selection
is “hard” because the scheduler can only select one satellite
or another to transmit to a ground station. Withholding data
is a soft decision, i.e., a satellite can choose to withhold all or
a fraction of its data. To reduce the complexity of the solution,
we take a two-stage approach: (1) matching satellite-ground
station pairs, and (2) max flow.

3.2.1 Stage 1: Matching Satellite-Ground Station Pairs. First,
we solve the assignment between satellites and ground sta-
tions independently for each time step in the TEN graph. For
time ¢, we consider the bipartite graph consisting of satellites
and ground stations. Our goal is to select a subset of edges
that maximize the sum of weights of selected edges. Each
edge (s;,g;) has a weight R; ; () = max (bs,»,gj (1), cachei(t))
where cache;(t) is the amount of data available at satellite
s; at time t. We calculate the maximum matching via the
classical Hungarian algorithm [32]. This algorithm runs in
O(n®) time to generate an optimal solution, where n is the
number of satellites (or ground stations, whichever is larger).
Thereafter, we calculate the data amount each satellite can
downlink, and the cache (holdover) size on satellites. We
update the TEN to remove links that were not picked by
this step. This yields a matching graph for each time step,
wherein each satellite is connected to at most one ground
station, and vice-versa.

3.2.2 Stage 2: Maximum Flow Across Time. Next, to make
withholding decisions, we reason across time. We do so by
formulating the optimization problem as a maximum flow
problem from source to sink in our entire TEN graph, con-
taining all satellites and ground stations, across multiple
time steps (typically a day, but could be shorter). We use the
push-relabel algorithms [20], with a complexity O(V?VE),
where V is the node set and E is the edge set.

This solution reveals holdover decisions: if the optimal
flow passes through any holdover edges, say between time ¢
and (t + 1) at satellite s;, this implies satellite s; chooses to
withhold that amount of data at time ¢.

3.2.3 Binary Search for Optimal Latency. Our algorithm so
far is optimized for throughput. To optimize for latency with-
out affecting throughput, we use the following approach: if
the original TEN run was on time interval [0, T] (i.e., was
completed in T steps), we find the smallest value of T’ (< T),
so that the throughput of TEN on [0, T”] is no lower than 99%
of throughput of TEN’s solution on [0, T]. This reduces la-
tency as it forces data transfers to be completed earlier by T’
instead of T. We find T’ by performing a binary search on the
interval [0, T]. The binary search is feasible as throughput
increases monotonically with T’, since more flow opportuni-
ties exist at higher T’ values. Once T’ is found, we execute
the next TEN on time [T’, T’ + T], and repeat.
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(b)
Figure 6: Umbra’s Graph Simplification Optimization on Satellite Time Expanded Networks. (a) Disconnected Satellite:

A canonical subgraph at the satellite (B;s), where By, . .

edges. (d) Corresponding Simplified structure (for max flow).

3.2.4  Graph Simplification Optimization. The TEN graph
can be large. Consider Planet Inc.’s Dove constellation with
(over) 150 operational satellites and 12 ground stations. If
each time instant is a 1 minute granularity, and we calculate
max flow across 1 day, then the resultant time expanded
network has 2 Million nodes. Our max flow algorithm may
take prohibitively long.

To optimize this, we first observe that the contacts be-
tween ground stations and satellites are sparse. During a 5
day period, the number of edges between the satellites and
ground stations, in the Planet Dove dataset, are in the ball-
park of 10K. This implies that a large number of satellites in
the graph only have withholding edges and no connections
to ground stations for long durations, as depicted in Fig. 6a.
Similarly, ground stations also experience long durations
where they are only transmitting to the cloud (Fig. 6c).

We “collapse” such consecutive node sequences into one
fused node, i.e., all intermediate nodes inside a fused node
have only one in-neighbor and one out-neighbor. This re-
duces the search space for the max flow algorithm without
affecting the correctness of the calculated solution. Fig. 6
shows two canonical scenarios.

3.3 Analysis: How Bad is UQE?
UQE (Section 1.1) leads to quadratically long queueing times.

THEOREM 1. The greedy (“fast”) transfer approach (Sec-
tions 1.1) causes queuing times to increase proportionally with
variance of distances between consecutive ground stations.

Proor. Consider one satellite S and its orbit. Let N =
number of Ground Stations (GSs) that S passes. N is a fixed
constant and we only vary the locations of GSs along S’s
orbit. Let x be the random variable for the distance between
consecutive GSes encountered by S. Let the mean of x be p.
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(d)

., By, has no other edges, (b) Corresponding Simplified structure (for max
flow). (c) Purely Transmitting Ground Station: A canonical structure at the ground station (B;s), where By, . .

., B, have no other

Rewrite x; = p + &;. Since % =y, and N is constant, we
have: }}; 5; = 0.

Now, first, the probability of a given piece of data being
picked up during the ith GS-GS segment is proportional to
distance x;. Therefore (and second), the average additional
waiting time for this piece of data at the (second) GS is pro-
portional to its average added queue length, which is 3.

Putting these together, the average queueing time for a

piece of data is proportional to

Y= Z x?lz = %(Z (u+68)% = %.(ZHZ+Z(2.y.5i)+Z 52).

The middle term is zero since ) ; §; = 0.So Y = % (X 2+
%.; 62). The first term is a constant (given N), and the second
term is proportional to the variance of inter-GS distances.

m]

4 SYSTEM DESIGN

Fig. 7 shows Umbra’s control plane architecture. Umbra’s
scheduler runs on the cloud and communicates the latest
schedule to ground stations, which then relay them to satel-
lites upon next contact. The two key components in Umbra
are: (a) Simulator, and (b) Scheduler. The former simulates
the evolution of the satellite-ground station links using Two
Line Element (TLE) orbit descriptors to both perform orbit
calculations [24] and to compute link capacities using a link
quality model [26-28]. Profilers running on ground stations
continuously relay queue sizes and cloud bandwidth data as
input to the Umbra Simulator. Umbra’s second component,
the Scheduler, interacts with the Simulator in an interactive
way. The Scheduler constructs the time expanded network
(TEN) and computes the optimal data transfer plan.
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Figure 7: Architecture of Umbra (Control layer).

Updating the data transfer plan: Typically, the TLE orbit
descriptors are updated periodically (on the order of a day
to few days) to maintain accuracy. Therefore Umbra pulls
new orbital data and calculates a new plan every five days,
and relays it to the ground stations and satellites. We later
evaluate the effect of an outdated plan. Umbra can be forced
to generate a new schedule upon events like crashes, new
satellite deployment, ground station upgrades, etc.

Handling component failure: Satellite failure is com-
mon in large constellations. For example, solar flares re-
cently caused 40 of 49 SpaceX satellites to fail after a recent
launch [4]. Ground stations may also fail, due to power out-
age, machine reboot, extreme weather or local events. We
assume the cloud has redundancy and is always available.

Whenever a satellite fails, Umbra computes a new sched-
ule. While a new schedule is being calculated, all satellites
and ground stations continue using the old (latest) schedule.
Newly joining satellites wait to receive a new plan before
transmitting anything and store data locally.

The failure of a ground station has a greater impact, since
satellites have to route their data through the ground station.
After such a failure, while Umbra is generating a new data
transfer plan, a satellite which encounters a failed ground
station will detect the lack of acknowledgments, and merely
withhold all its planned data until it encounters the next
non-faulty ground station.

5 EXPERIMENTAL SETUP

We implemented Umbra in a simulator using about 500 lines
of Python code. We plan to release our simulator code in the
public domain. In our experiments, we inject traces derived
from Planet Inc.’s Dove constellation [37] into our simulator.

5.1 Satellite Constellation

Our satellite dataset from Planet Inc. contains orbital data
collected from 153 satellites in orbit as part of the Dove
satellite constellation [37]. These satellites orbit around the
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Earth in one of two polar orbits, as shown in Fig. 8, and
collect RGB and NIR (near infrared) imagery.

Imagery: We run each of our data transmission plans on im-
agery collected from these satellites for 15 days spread across
three months (the first five days in June, July, and August
2021). We access the metadata of the imagery collected on
these satellites using the Planet Developer API?. Each image
is approximately 300 MB in size, and spans at least 24 km by
8 km distance on Earth depending on the satellite hardware
and the variability in its altitude. In total, we collect data for
nearly 6 million images. To the best of our knowledge, this is
the largest evaluation involving any satellite dataset. Table 1
shows a summary of these statistics.

Ground Station: We model Planet’s ground station archi-
tecture using publicly released information. Specifically, we
simulate 12 ground stations carrying a total of 48 anten-
nas [9, 12]. Fig. 8 shows the ground station locations.

Network Properties: We follow the radio architecture
reported in [13] for simulating the satellite-ground station
communication, achieving a bandwidth of up to 2 Gbps. Pub-
lic information on available bandwidth for ground station-
cloud backhaul links is scant. We have been in communica-
tion with multiple satellite operators. We use a combination
of the anecdotal information we collected via these conversa-
tions, along with public domain information [38], to derive
typical ground station-cloud bandwidths. We estimate the
backhaul bandwidth values to be generally around 1 Gbps,
but varying from 100Mbps to a few Gbps depending on the
location. In our experiments, we vary ground station-cloud

bandwidths.

5.2 Trace-driven Simulator

We evaluate Umbra in a discrete-event simulation. The sim-
ulator keeps track of both: i) internal status of the ground
station, i.e., time, image queue, upload bandwidth, etc., and
ii) satellites, i.e., time, position, captured images, etc. It sim-
ulates the system at a time granularity of 1 minute periods.
This simulator is decoupled from Umbra’s control plane in
Section 4, allowing us to explore stale plans, failures, etc.
Simulator execution is fine-grained. During each time step,
the simulator computes the bandwidth between each ground
station-satellite pair, and then simulates the scheduling algo-
rithm’s execution plan on the waiting data at each node.

Simulating Orbital Motion and Bandwidths: We use
TLEs obtained from Celestrak [29] to calculate the position,
and velocity of satellites in orbit using the PyOrbital library?>.
The TLEs are periodically updated for accuracy—depending
on the timestamps of the image being used, we retrieve the

2See https://developers.planet.com/quickstart/apis/
Shttps://pyorbital.readthedocs.io/en/latest/
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# Satellites 153

# Ground Stations | 12

Total Images 5,993,212

Image Size (mean) | 300 MB

Total Data Volume | 1798 TB
A # Days 15

Table 1: Satellite Trace Details.

GS4

Figure 8: LEO Path & Ground Station Locations (Left) The 2 orbits with 153 satellites
for the Dove constellation. (Right) The position of 12 ground stations on Earth.

most up to date TLE information from Celestrak for our sim-
ulation. We predict satellite radio bandwidth by using the
International Telecommunication Union (ITU) model [26—
28] which takes as input satellite distance, elevation, azimuth,
and local precipitation at the ground station. Weather infor-
mation is pulled via the DarkSky weather API [10].

Hardware: We run our simulator and optimization frame-
work on a SuperMicro SYS-4028GR-TR* server. To bench-
mark the time taken by our scheduler, we run the scheduler
on a single core. It takes approximately 25 minutes to sched-
ule satellite traffic for a 5-day run of the entire constellation.
This time could be optimized further by leveraging paral-
lelization, especially for computing the Hungarian matching
(Section 3). However we do not explore this because we
expect plans to be infrequently updated.

5.3 Baselines vs. Umbra

We compare Umbra against three baselines:

1. Greedy: This is the status quo: fast “greedy” transfers
(Section 1) that fully utilize satellite-ground links. We use
the ground station-satellite matching using past work [44].
2. Withhold - Naive: Inspired by public documentation [13]
where satellites skip over-subscribed ground stations, we de-
signed a simple withhold scheduling strategy. In this strategy,
the satellite compares the current queue sizes at its current
ground station contact and its next (expected) ground station
contact. If the next ground station contact currently has a
smaller queue than the current ground station, the satellite
decides to withhold all of its data, and instead transmits it to
the next ground station.

3. Withhold - Smart: We also design a more complex
heuristic-based withholding approach in which a satellite
transfers an amount of data inversely proportional to its
current queue size at the ground stations. Namely, denote
q1, q2 as the queue size for the current gs and the next contact

4https://www.supermicro.com/en/products/system/4U/4028/SYS-4028GR-
TR.cfm
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Figure 9: Satellite-ground station contact statistics.

gs, and denote V as the total volume of the cached data on
satellite. Then, the satellite will transmit V = qufqz volume
of data during the current contact.

Our key metrics are: (a) Throughput: How much data can
a scheme transmit per day? and (b) End-to-end Latency: How
long does it take for an image from the time of its capture to
get to the cloud?

6 EXPERIMENTAL EVALUATION

We present our evaluation of Umbra below.

6.1 Satellite System Characteristics

Satellite-Ground Station Link Characteristics: Fig. 9a
shows the distribution of the contact duration between satel-
lite and ground stations. The contact time varies between 1
minutes and 7 minutes, with the mode at 6 minutes. Fig 9b
plots the distribution of (maximum) data volume that can
be downloaded during each contact. This value ranges from
10.37 GB to 103.48 GB, with a median 74.98 GB. These num-
bers are consistent with Planet’s public data [13]. The large
data volume leads to queue build up at the ground station.

Does increasing satellite bandwidth help? We simulate
improved satellite radio hardware by doubling the band-
widths in our simulator for all satellite-ground station links
and simulate the data download process using the greedy
baseline. Fig. 10 shows the CDF of the latency. Counter-
intuitively, the 90th percentile latency increased by 22% when
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Figure 10: Increasing satellite bandwidth increases la-
tency. The CDF of end-to-end latency for images when the
satellite bandwidth is doubled.

satellite downlink bandwidth was doubled! This is due to the
uneven queue buildups at a subset of ground stations, and
points to the need for withhold scheduling.

6.2 End-to-end Performance

Throughput: We evaluate the throughput achieved on three
traces spanning five days each across three different months.
We plot results from only Day 2 onwards, to measure per-
formance in steady state. We perform this experiment with
different values of backhaul (ground station to cloud) band-
width (1.2 Gbps, 1.5 Gbps, 1.8 Gbps).

Table 2 shows throughput values of Umbra, and the three
baselines (Section 5.3). First, we observe that Umbra con-
sistently reaches higher throughput than the alternatives.
For the 1.2 Gbps backhaul, Umbra outperforms the greedy
baseline by 13%, naive withhold by 31%, and smart with-
hold scheduling by 13% respectively. This is because Umbra
equalizes queue sizes across different ground stations by mov-
ing traffic from over-subscribed ground stations to under-
utilized ground stations and improves net utilization (and
hence throughput). The naive withhold strategy achieves
lower performance than Umbra because the former is more
aggressive about withhold decisions (i.e., just looks at cur-
rent queues and decides to skip). On the other hand, the
smart heuristic-based withhold scheduling performs better
than the other baselines, especially as bandwidth improves.
Finally, as backhaul bandwidth improves from 1.2 Gbps to
1.8 Gbps, gains for Umbra over baselines decrease. This is
expected because the queue sizes become smaller as the
backhaul bandwidth improves.

Takeaways: We summarize two key takeaways from this
result — (a) Our proposal for witthold scheduling is essen-
tial for efficient network utilization in satellite networks.
Even a heuristic-based withhold scheduling outperforms
greedy scheduling approaches used today. (b) However, with-
hold scheduling needs to be done intelligently to maximally
realize potential gains. Therefore, Umbra’s realization of
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withhold scheduling using time-expaneded networks out-
performs other baselines.

Latency: Fig. 11 shows end-to-end latency for an image
from its satellite capture to arrival at the cloud. For 1.2 Gbps
backhaul, median latency of greedy (8.8 hours) is 42% higher
than Umbra (6.2 hours). The latency of naive withholding
is much higher at 13.7 hours, while that of smart withhold-
ing strategy is 8.9 hours. Tail latency improvement is even
larger: at 1.2 Gbps backhaul, 90-th percentile latency of Um-
bra is 11.0 hours, vs. 38.7 hours (3.5 X worse) for greedy
baseline, 66.5 hours (6 X worse) for naive withholding, and
37.98 (3.5 X worse) hours for smart withholding. The gain
continues to hold at higher backhaul bandwidths. At 1.5 Gbps
backhaul, 90-th percentile latency of greedy baseline is 19.3
hours, naive withholding is 60.9 hours, smart withholding
is 20 hours , while Umbra’s is only 8.3 hours.

Tail latency is critical for latency-sensitive applications,
e.g., analyzing conflicts, natural disasters, etc. Furthermore,
service providers generally have service level objectives (SLO)
concerning P90 or even further tailed performance to give
guarantee on the worst case of their service, in which case
improving P90 is essential in increasing the efficiency of the
whole system. Umbra’s ability to avoid some data being
stuck in long queues, and Umbra’s consequent 3.5-6 X im-
provement in P90 latency, would dramatically reduce the
time to act on insights from this data.

6.3 Inside Umbra

First, we look at withholding decisions made by Umbra. We
evaluate how often Umbra withholds data and by how much?
For each scheduled link between a satellite and ground sta-
tion, we measure the fraction of data withheld and plot the
CDF in Fig. 12(a). The fraction ranges from 0 to 1, with 0 cor-
responding to no data being withheld. We observe a majority
of decisions are binary withholding decisions, i.e., either all
the data is withheld or none is. Backhaul bandwidth does
not significantly affect these. Nevertheless, compared to our
withhold scheduling heuristics(Section 5.3), the selection of
which links to withhold on, is more intelligent in Umbra,
causing it to have better performance.

Finally, Figs. 3 and 12(b) show queue size (sampled) at
two typical ground stations. With the greedy baseline, queue
sizes vary widely (and wildly)—while one ground station
sees ever-expanding queues, others stay idle, thus wasting
resources. Umbra’s intelligent withholding scheme balances
loads across ground stations and stabilizes queue sizes.

6.4 Heterogeneity in Ground Stations

We relax our homogeneity assumption on ground stations
and afford a subset of them higher backhaul bandwidth to
the cloud. We select a random 50% of the ground stations
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Throughput (TB of data)
Trace 1.2Gbps 1.5Gbps 1.8Gbps

June July August June July August June July August

Greedy 392.3 393.2 381.8 428.1 427.4 414.3 443.9 444.1 430.1
(12.35%) | (12.02%) | (10.84%) || (6.06%) | (5.92%) | (4.93%) || (2.33%) | (1.81%) | (1.06%)

Withhold| 335.6 341.3 327.7 343.5 347.5 334.3 351.7 357.8 344.9
~ Naive | (25.02%) | (23.63%) | (23.47%) || (24.62%) | (23.51%) | (23.29%) || (22.62%) | (20.89%) | (20.66%)

Withhold| 395.7 394.8 384.5 436.1 434.1 420.8 454.1 455.9 435.5
— Smart | (11.60%) | (11.66%) | (10.21%) || (4.30%) | (4.45%) | (3.44%) || (0.09%) | (-0.80%) | (-0.18%)

Umbra 447.6 446.9 428.2 455.7 454.3 435.8 454.5 452.3 434.7
0.00%) | (0.00%) | (0.00%) || (0.00%) | (0.00%) | (0.00%) || (0.00%) | (0.00%) | (0.00%)

Table 2: Data throughput. Each row is measured over a 3-day period in the month. Parentheses show % worse than Umbra.
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Figure 12: Analyzing Umbra’s Performance.

to have a 2 Gbps backhaul bandwidth. Table. 4 shows results
over 3 independent trials. We observe that Umbra achieves
a throughput of 571.8 TB (std dev 0.10) across 5 days, with
a 31% improvement over the greedy baseline. The standard
deviation is much lower for Umbra, showing it can load
balance even across heterogeneous ground stations.

6.5 Many Distributed Ground Stations

Recent work [43, 44] has proposed distributed ground station
architectures where hundreds of tiny low-complexity ground
stations outperform the efficient multi-million ground sta-
tions deployed today. We tested Umbra in this setting, using
the same image trace data as before. We sampled 200 ground
stations from the Satnogs database [33], which is an open-
source network of amateur ground stations operated by inde-
pendent enthusiasts. This methodology is similar to [43, 44].
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| ® Umbra
|

i 2
.
15 | | | )
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Figure 13: Robustness Analysis. In (a): points perturbed
horizontally for clarity, and error bars are 25-75 percentile.

We set their backhaul bandwidth via a Poisson distribution
with A = 75 MBps . The total backhaul capacity is 15GBps,
which is 8X the sufficient amount to fully transmit all data
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Mean Throughput (Std dev)
425.54 (5.53)
443.94 (8.38)

Greedy
Withhold - Naive
Withhold - Smart 430.97 (5.56)

Umbra 445.01 (8.80)
Table 5: Throughput (in TB) for distributed ground
stations.
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Figure 14: Latency cdf for distributed ground stations

generated by our satellite constellation. We sampled 3 sets of
different bandwidth configurations for the ground stations.

Table 5 summarizes throughput during Days 2-4 for all
approaches. The improvement on average throughput by
Umbra is not significant, which is expected when we provi-
sion 8X the required total bandwidth for the ground stations.
However, from Fig 14, we see that Umbra reduces the P90
latency greatly (2.5X against naive withholding heuristic,
the second-best performing algorithm) even with abundant
backhaul bandwidth. This shows that the UQE problem is
even harder to solve by just over-provisioning infrastructure,
when the EO satellite systems evolve into the new distributed
ground station scenario in the future.

6.6 Robustness to Errors & Failures

Bandwidth Estimation Errors: Umbra may receive inac-
curate bandwidth estimates due to sudden change in weather,
interference at the ground station, etc. We evaluate the ro-
bustness of Umbra’s solution. We add random noise to the
downlink bandwidth in the simulator at run time, i.e. af-
ter the scheduler has calculated the data transmission plan.
Fig. 13a shows that noise moderately degrades median and
tail latency for Umbra. A noise level of x means each link’s ac-
tual bandwidth is chosen uniformly in the +(100 - x)% range
from the predicted bandwidth. Concretely, increasing noise
factor from 0.05 to 0.2 degrades Umbra’s median latency by
15% and P90 latency by 8.4%. Past work has shown the ability
to accurately predict data rates within 6% error [44], so we
expect Umbra to perform well in real-world settings.

Hardware Failures: Ground stations fail occasionally due
to power or network outages. To evaluate Umbra, we com-
pare three scenarios: 1) Umbra (No Update), which never
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updates the plan even after failure(s), 2) Umbra (Update),
which calculates a new plan after failure, and disseminates
it, and 3) Oracle, which is prescient about the failure and
generates a plan ahead of the failure point, and initiates the
new plan right at the failure point.

We fail 33% of ground stations instantly at t = 60 hours.
Fig. 13b shows that right after the failure, both versions of
Umbra (Update and No Update) keep throughput as high as
the Oracle. That is, the failure does not cause a massive drop
in throughput beyond what is expected. Because one-third
of the stations fail, total throughput drops to 66% of the orig-
inal throughput. The stable throughput lasts for only about
40 hours in Umbra (No Update) and then starts to degrade
rapidly (¢ = 100 hours and onwards), showing that plans
become stale after less than 2 days. Umbra (Update version)
has a plan that stays stable as long as the Oracle, giving
ground station crews a longer time to repair the failure(s).

7 RELATED WORK

Satellite Networking: Our work follows recent work [5, 6,
11, 21-23, 43, 44] in the satellite networking domain, includ-
ing: edge computing on the satellites [6, 11], ground station
architectures [22, 43, 44], security of satellite networks [19],
inter-satellite links [21, 23], network benchmarking [21], etc.
For satellite-ground station traffic, past work [11, 43, 44]
treats the satellite-ground station contact as the bottleneck
and schedules traffic greedily, i.e., transfers as much data as
possible in every contact. Unlike past work, Umbra takes a
withhold scheduling approach, where all or part of the data
can be withheld for subsequent contacts between satellite
and Earth. We are also the first ones to focus on the ground
station-cloud bandwidth as an emerging bottleneck given the
rapid advances in satellite-ground station radio speeds [13].

Time Expanded Networks: Scheduling dynamic network
flows is well-studied [16, 17, 40]. Flow scheduling using time
expanded networks has been explored in the context of sched-
uling traffic in the internet [16] and sneakernets [7]. Recently,
some research has looked to formulate time expanded net-
works in the satellite context [39, 45, 47]. This work focuses
on the task of relaying traffic through a network of inter-
connected satellites and models it from an energy [39], com-
pute [45], and network perspective [47]. Our modeling of
this problem is unique because we are the first to model
the end-to-end data transfer from large scale satellite con-
stellations to the cloud as a time expanded network. This
modelling is challenging in its scale — hundreds of satellites,
tens of ground station antennas, and time varying links. In
addition, we are the first to leverage time expanded networks
for load balancing. Finally, our work reveals new insights
like how ground stations can suffer from load imbalance and
how we can frame a new withhold scheduling approach by
performing analysis on this time expanded graph.
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Traffic Scheduling Algorithms: There has been a large
body of work on scheduling algorithms in other contexts
such as data centers. Our observations and results in satellite
traffic are analogous to the delay scheduling work for cluster
scheduling [50]. Delay scheduling observed that instead of
scheduling jobs to the first available node on a cluster, it is
advantageous to wait for a small amount of time and find
a node that has favorable features (e.g., data locality). This
improves overall system performance. In spite of similarity,
Umbra’s setting and techniques are different— network traf-
fic instead of cluster scheduling. Furthermore, the scale of
our problem is enormous and requires network flow formu-
lations & optimizations.

Disruption Tolerant Networks (DTN): DTN is a class
of networks experiencing intermittent connections between
endpoints. There is a rich literature in routing and traffic
engineering in DTN [30], and in applications of TEN in DTN
such as running shortest path algorithm for routing [35] or
maximum flow algorithm for optimizing throughput [46].
Traffic in DTNs flow in a "Store, Carry and Forward" man-
ner [34] similar to LEO satellite systems, but Umbra is dif-
ferent from the works on DTN in terms of the scale of the
system and the objective being optimized. First, Umbra deals
with earth imaging satellites which transmit massive im-
ages rather than short messages, where the bottleneck is not
only intermittent connections but also limited networking
bandwidth in the system. Second, while previous work on
DTN mostly deals with a multi-agent network and focuses
on optimizing for one device in the network, Umbra works
in a centralized network where all the ground stations and
satellites are owned by the same entity and they can collabo-
rate to optimize for a global objective. Finally, while the DTN
works try to optimize either latency or throughput using
TENs, Umbra is, to our best knowledge, the first algorithm
that can optimize the 2 objectives simultaneously.

8 CONCLUDING DISCUSSION

Delivering data from multiple constellations: Recent
years have seen emergence of the Ground-station-as-a-service
(GSaaS) model by many commercial entities [3, 31, 36]. These
companies allow constellation operators to rent ground sta-
tion time by the minute to schedule data download. We
expect withhold scheduling to be effective in such contexts.
However, the measurement of network queue size needs to
be indirect, as the queue size at the ground station may not
be visible to satellite constellation operators. We note that
UQE will get worse if the backhaul bandwidth of ground
stations decrease, as shown in our evaluation. Therefore, we
expect Umbra to be more efficient under the GSaaS scenario.

Inter-station and inter-satellite links: Our evaluation
assumed the absence of these links because they are not
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common in today’s deployments. However, both these kinds
of links can be added to our graph and our TEN-based solu-
tion (Section 3) would still generate a solution. For instance,
a satellite could route data through another satellite using
an inter-satellite link, especially when the latter satellite is
connected to a low-queue station.

What did not work? To make withholding decisions, we
experimented with iterating between: (a) identifying the
best matching between a satellite and ground station at a
given time instance, and (b) computing the max flow in the
time expanded network. In principle, this was reasonable
because if a satellite withholds data from a ground station,
a different satellite may want to use this ground station
(this decision can be made in the next iteration). However,
we noticed that the scheduling objective (e.g. throughput)
showed little improvement beyond more than one iteration,
and only increased computation cost. We believe that this
is because most Dove satellites follow each other in one of
two orbits and come in contact with the same ground station
sequences. So, withholding decisions are similar for different
satellites in proximity with a crowded ground station.

Ground Station Backhaul Bandwidths: Our work ex-
plores the ground station-cloud backhaul link as the bot-
tleneck in satellite data transfers. Over the next few years,
we expect three factors to increase the demand for back-
haul bandwidth even more: (i) satellite-ground bandwidths
continue to improve to 5 Gbps and beyond ([41, 49]), (ii)
operators will amortize the cost of site acquisition and licens-
ing by deploying more antennas at the same ground station
site, and (iii) increased computation demands at the ground
stations (for pre-processing), will cause queuing delays to-
wards the cloud to continue increasing, even if backhaul
bandwidths keep improving.

Umbra and Resource Utilization Efficiency While pro-
visioning higher backhaul bandwidth can always reduce
queues on the ground stations and reduce the latency, it will
not solve the problem of the low resources utilization. We
note that the constellation sizes continue to grow over time.
Umbra can support more satellite with the current infras-
tructure, as well as use less bandwidth to support emerging
constellations. Moreover, in the GSaaS setting, the ground
station capacity and bandwidth needs to be rented from the
provider, and increasing its efficiency has economic benefits.
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