StarCDN: Moving Content Delivery Networks to Space

William X. Zheng
University of Illinois
Urbana-Champaign

Anirudh Sabnis

Akamai Technologies

Abstract

Low Earth Orbit (LEO) satellite networks, such as Starlink, provide
global internet access and currently serve content to millions of
users. Recent work has shown that existing network infrastructures,
such as Content Delivery Networks (CDNs), are not well-suited
to satellite network architectures. Traditional terrestrial CDNs de-
grade performance for satellite network users and do not alleviate
the congestion in the ground-satellite links. We design StarCDN,
a new CDN architecture that caches content in space to improve
user experience and reduce ground-satellite bandwidth usage. The
fundamental challenge in designing StarCDN lies in the orbital
motion of satellites, which causes each satellite’s coverage area
to change rapidly, serving vastly different regions (e.g., US and
Europe) within minutes. To address this, we introduce new consis-
tent hashing and relayed fetching schemes tailored to LEO satellite
networks. Our design enables cached content to flow in the op-
posite direction of the orbital motion to counter satellite motion.
We evaluate StarCDN against multiple baselines using real-world
traces from Akamai. Our evaluation demonstrates that StarCDN
can reduce the ground-to-satellite bandwidth utilization by 80% and
improve user-perceived latency by 2.5X. Further, we make available
an open-source trace generator, SpaceGEN, for realistic simulations
of satellite-based CDNs.

CCS Concepts

« Networks — Network services; Mobile networks; « Comput-
ing methodologies — Distributed computing methodologies.

Keywords

Starlink, LEO satellite networks, content delivery networks, net-
work trace generation.

ACM Reference Format:

William X. Zheng, Aryan Taneja, Maleeha Masood, Anirudh Sabnis, Ramesh
K. Sitaraman, and Deepak Vasisht. 2025. StarCDN: Moving Content Delivery
Networks to Space. In ACM SIGCOMM 2025 Conference (SSIGCOMM °25),
September 8—11, 2025, Coimbra, Portugal. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3718958.3754345

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGCOMM °25, Coimbra, Portugal

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1524-2/25/09

https://doi.org/10.1145/3718958.3754345

Aryan Taneja
University of Illinois
Urbana-Champaign

Ramesh K. Sitaraman
University of Massachusetts Amherst
Akamai Technologies

948

Maleeha Masood
University of Illinois
Urbana-Champaign

Deepak Vasisht
University of Illinois
Urbana-Champaign

1 Introduction

Satellite networks, offered through mega constellations operating
in Low Earth Orbits (LEO), are rapidly gaining traction. Starlink,
a leading LEO satellite network provider, already has over four
million subscribers across 100+ countries [53]. It currently operates
more than 7,000 satellites, with plans to expand to 40,000 satel-
lites [10] and to provide direct-to-cell services [52]. Similarly, other
companies such as OneWeb and Amazon Kuiper offer/plan to of-
fer similar LEO satellite-based networking services. Increasingly
LEO satellite networks (LSNs) are used for delivering content to
users around the globe [53]. Our work is focused on enhancing the
performance and reducing the cost of content delivery using LSNE.

Content Delivery Networks (CDNs): CDNs were invented a
quarter century ago to enhance the performance and reduce the cost
of delivering content such as websites, media and downloads over
the terrestrial internet [20]. CDNs deploy hundreds of thousands
of “edge” servers around the world to cache and serve content
from locations that are “proximal” to the user [42]. CDNs enable
content to be served with lower latency, i.e., higher performance
as perceived by the user, as content traverses a shorter network
path from a proximal edge server to the user. CDNs also reduce
the cost and network utilization since content can be downloaded
once to a CDN edge server and delivered multiple times to users,
saving the upstream WAN bandwidth (called midgress [59]) of
transmitting content from an origin server to the edge. To achieve
the performance and cost benefits, CDNs deploy clusters of edge
servers across the globe, where each cluster caches and serves
content to a proximal set of users. Further, CDNs use sophisticated
techniques such as consistent hashing to manage the content within
these clusters [36]. The benefits that CDNs provide have made
them an essential component in modern internet infrastructure,
and CDNs serve nearly 75% of global internet traffic [15].

Shortcomings of the current state-of-the-art: Current solutions
that use traditional (terrestrial) CDN technology in conjunction
with LSNs have several shortcomings that motivate our work. Re-
cent work [8, 9] has shown that using traditional terrestrial CDNs
in conjunction with Starlink degrades the Quality of Experience
(QoE) for users. This degradation occurs because user traffic in
Starlink flows through a bent-pipe architecture, wherein a user
connects to a satellite, which in turn connects to the nearest ground
station, as shown in Fig. 1. The ground station, then, connects to an
edge server of the terrestrial CDN, increasing the latency by over
100 milliseconds [27]. A small fraction of the network traffic may
also flow through inter-satellite links (ISLs) — ISLs have abundant
bandwidth (100Gbps) compared to ground-satellite links (20Gbps).

https://doi.org/10.1145/3718958.3754345
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3718958.3754345

[E|Bent-pipe
connection

user

Figure 1: Satellite network users often experience higher latencies
compared to terrestrial users when accessing content due to the bent-
pipe architecture where a user connects to a CDN’s edge server via
one more satellites and a ground station (GS), traversing ground-to-
satellite links and perhaps also inter-satellite links (ISLs).

In such cases, a user in area-1 (Fig. 1) may connect via ISL to a CDN
edge server in area-2 that is much farther than their home location.
Besides the increased latency, the CDN server in area-2 may also
cache different content and apply different geo-access constraints.
For example, [40] observed that users in Africa may connect to
ground stations in Europe that connect to CDN servers that likely
have Europe-specific content in their cache.

In addition to performance degradation due to the increased
latency, traditional CDNs do not improve the utilization of the
satellite links of the LSNs. In the current state-of-the-art, if multiple
users watch the same video, it must be uploaded multiple times to
the satellite, wasting precious uplink bandwidth to the satellite.

Our focus: The primary question that motivates our work is whether
CDN technology can be used to enhance performance, improve net-
work utilization, and reduce the operating cost of delivering content
to users of LSNs. Our main approach to answering this question is
exploring whether a system of edge servers can be deployed in LEO
satellites to cache and serve content to (terrestrial) users. However,
the significant challenge to pursuing this approach is the fact that
the edge servers are in motion as the satellite orbits the Earth once
every 90 minutes. Unlike a traditional CDN where the edge servers
are stationary, in our setting, the users that are proximal to an edge
server vary dynamically in the order of minutes, as do their content
access patterns. Rethinking the CDN’s edge cluster architecture in
the new context of LSNs, in particular its content placement, request
routing, and caching, is the main contribution of our work.

Our approach: We propose a space-based content delivery net-
work called StarCDN that is specifically architected to work with
LSNs. StarCDN leverages emerging computational capabilities of
satellites to deploy edge servers that can cache content in space,
thus reducing the latency of access for users and improving their
quality of experience. Further, StarCDN reduces the uplink band-
width required for satellite networks, allowing the scarce spectrum
to be repurposed for downlink demand. In designing StarCDN, we
solve three key challenges:

949

(i) Multi-satellite Redundancy: To provide optimal service at long
range, LSNs use dense deployments comprising thousands of satel-
lites. Therefore, at any time instant, a Starlink user can connect
to 10+ satellites. This set of satellites is dynamic and can change
within a few minutes due to the satellite’s orbital motion. Since
a user can connect to any of the visible satellites, the content re-
quested by this user must be cached at all the visible satellites for
the user to reliably receive it from the cache. This leads to high
miss rates and wastage of precious storage space on satellites.

To counter these effects, we propose a consistent hashing scheme
[30, 36] for edge servers deployed in the satellites. In StarCDN, we
hash each object to one of K (e.g., K = 4) buckets and map each
bucket to a different satellite. When a satellite receives a request
for data in its own bucket, it can simply respond with the data (i.e.,
cache hit) or request data from the ground (i.e., cache miss). How-
ever, if a satellite receives a request for data from a different bucket,
it forwards the request to a neighboring satellite with this bucket
using its ISL link. We map buckets to satellites in a grid pattern

such that each bucket is at most 2L§J hops away in the constella-
tion. Our consistent hashing approach optimizes the utilization of
storage capacity in space, while minimizing the additional latency
experienced for requests.

(ii) Orbital motion: In terrestrial CDNs, objects are cached in
servers that are located in physical proximity to the users. Caching
decisions rely on local popularity characteristics of objects served by
the CDN. For example, least recently used (LRU) or least frequently
used (LFU) objects are removed from the cache to make way for the
addition of new objects. However, LEO satellites orbit around the
Earth at speeds of around 8 km per second and serve a given location
for less than ten minutes. A satellite serving users in the United
States may serve European users in a matter of minutes. Therefore,
the access pattern, popularity statistics, and cache content rapidly
grow stale, leading to low hit rates. Our analysis shows that a simple
LRU cache deployed on satellites will achieve a hit rate below 60%
due to such orbital motion.

To counter the effects of orbital motion, StarCDN deploys a re-
layed fetch technique, where a satellite can relay a request to a
neighboring satellite (with the same bucket ID) using its ISL link in
case of a cache miss. This allows StarCDN to benefit from a previ-
ous satellite’s cached object that just served a region. Effectively,
this allows cache content to flow backwards, i.e., in the opposite
direction of the orbital motion. Note that this backwards flow does
not propagate objects that are no longer popular because the relay
is initiated only in cases of a cache miss of an accessed object. We
limit the relay to the nearest neighbor to cap the additional latency
incurred due to such relays.

(iii) A novel publicly available trace generator that captures the
content access patterns of LSN users distributed around the world: It
is challenging to evaluate a space-based CDN design due to the
requirement for globally distributed traffic traces that capture con-
tent accesses of users around the world. Traditional CDN designs
are evaluated using traces from one (or a few) locations. However,
a satellite orbits the globe, and to effectively evaluate StarCDN, we
require traces from multiple locations on Earth for a large period
of time. To achieve this, we first collected limited real-world traffic
traces from nine locations across the world from Akamai’s CDN

over one day. Then, we designed a new synthetic trace genera-
tor, SpaceGEN, that uses footprint descriptors [58] to capture both
temporal variations of content access patterns within a location,
such as object access frequencies, and geographical variations of
content accesses across locations, such as how content accessed
across locations overlap. Further, SpaceGEN can produce synthetic
traces for the major traffic classes hosted on a CDN, such as web,
video and software downloads. Our trace generator enables realistic
long-term evaluation of StarCDN and other baselines.

Summary of contributions:

o StarCDN is the first space-based CDN designed to improve the
content access experience of LSN users while optimizing the
utilization of the ground-satellite network (§3).

e We design and evaluate a novel LSN-specific consistent hashing
scheme to reduce redundancy in satellite caches and improve
cache performance (§3.2). Further, we design and evaluate a
relayed fetch scheme for content to counter the effects of the
satellite’s orbital motion (§3.3).

o StarCDN is evaluated using realistic content access traces from a
geo-distributed set of LSN users. These synthetic traces were de-
rived using SpaceGEN, our novel trace generator that produces
synthetic traces that are similar to actual production traces for
different traffic classes, such as videos, web, and download con-
tent (§4). To the best of our knowledge, SpaceGEN is the first trace
generator for cache simulations that incorporates both temporal
and geographic variations in content access patterns of users. To
support more research in the area, we have released both our
StarCDN simulation framework! and SpaceGEN trace genera-
tor? on GitHub.

o We simulated CDN edge servers on satellites using actual servers
while simulating the satellite orbital motion and field of views
using the Microsoft CosmicBeats [38, 48] simulator (§5). We
simulate 1170 satellites from the Starlink constellation for our
experiments. Our experiments demonstrate that StarCDN can
improve the cache hit rates in space from 60% to 75%. It can
also reduce the satellite network uplink utilization by up to 80%,
and improve user-perceived latency by 2.5X.

2 Background
We provide a brief background for LSNs and CDNs.

2.1 LEO Satellite Networks

Satellite-based internet, using LEO satellites, has gained widespread
adoption over the last decade, with the emergence of Starlink,
Oneweb, and Kuiper[2, 43, 54]. Starlink is the most mature LEO
Network service provider, with more than 7,000 satellites in orbit.

Orbital motion: LEO satellites orbit around the Earth at an altitude
of around 550 km (compared to traditional geostationary satellites
at nearly 36000 km). Therefore, LEO satellites offer significantly
lower propagation delay to support modern internet applications.
LEO satellites also offer a better link bandwidth budget (and hence
more throughput) due to their proximity to Earth. However, LEO

Ihttps://github.com/ConnectedSystemsLab/StarCDN-Simulator
Zhttps://github.com/ConnectedSystemsLab/SpaceGEN

950

Avg Std Min Bandwidth
Delay(ms) | Delay(ms) | Delay(ms) (Gbps)
Intra-orbit ISL 8.03 0.376 4.76 100
Inter-orbit ISL 2.15 0.492 1.32 100
GSL 2.94 1.01 1.82 20

Table 1: Propagation delay and bandwidth of Starlink links.

satellites must have high speeds in order to maintain their orbits.
For context, LEO satellites orbit the Earth approximately every 90
minutes. Due to this fast orbital motion, a user dish can connect
to a satellite for at most a few minutes, resulting in frequent user-
satellite link "handovers" when satellites move out of view.

Network routing: Starlink satellites are equipped with radio wave
antennas for ground-satellite links and optical transceivers for inter-
satellite links (ISLs) [55]. The common mode of operation is a bent
pipe model, where the user dish connects to a satellite, which in
turn connects to a Starlink ground station. The ground station
forwards packets through the terrestrial network and connects to
the rest of the internet through an Internet Exchange Point (IXP).
This pipeline is shown in Fig. 1.

ISLs have recently been introduced in Starlink and are commonly
used in locations without a ground station nearby (e.g., in many
countries in Africa). A satellite uses ISLs to route traffic to other
satellites, which downlink it to a ground station on Earth. Starlink
satellites typically support four ISLs: two intra-orbit links (to previ-
ous and next satellites in the same orbit) and two inter-orbit links
(to adjacent satellites in parallel orbits)[72]. We list propagation
delays and bandwidths of ground-satellite links (GSLs) and ISLs in
Table. 1. We visualize Starlink’s orbits and ISLs in Fig. 5b.

2.2 Content Delivery Networks

A Content Delivery Network (CDN) is a large distributed system
potentially consisting of hundreds of thousands of edge servers
deployed in thousands of locations across the world [20, 42]. The
edge servers are deployed in clusters where each cluster is deployed
within a data center or colocation facility. A CDN edge server can
cache and deliver content to users on behalf of potentially thousands
of content providers. While the original content provider stores all
objects in their “origin” servers, CDNs do not cache every object at
the edge server due to limited cache space. When a user requests
content, say a web page or a video, that request is routed to a
proximal edge server of the CDN. If that server has the requested
content, a cache hit is said to have occurred, and the user is served
the content. If the edge server does not have the requested content,
a cache miss is said to have occurred, and the content is fetched
over the WAN from the origin server and served to the user. When
the cache of an edge server is full, CDN providers utilize eviction
policies to determine which content should be removed from the
cache[14, 71]. Various eviction policies have different strengths
and weaknesses. A commonly used policy is the Least Recently
Used (LRU) policy, and different LRU variants are often deployed
in commercial CDNs [36] for their simplicity and effectiveness. In
LRU, an object with the oldest last access is evicted from the cache.

Traditional CDN infrastructures are geographically static, rely-
ing on deploying edge servers close to the users [25] and routing
requests from users to a proximal edge server [13, 36] that can

https://github.com/ConnectedSystemsLab/StarCDN-Simulator
https://github.com/ConnectedSystemsLab/SpaceGEN

serve the content. The cache hit rate is a key metric to maximize
because each cache miss increases both the latency experienced by
the user and the upstream WAN bandwidth for fetching the “missed”
content from the origin server. The hit rate can be measured in
two ways — the request hit rate is the fraction of requests that were
cache hits, while the byte hit rate is the fraction of bytes served for
requests that were cache hits.

CDN architectures vary from provider to provider. Netflix [26,
27], YouTube [1, 67], and Amazon Prime are vertically integrated
and provide both the content and CDN services for their users
and are largely focused on video content delivery. On the other
hand, Akamai [42, 47] and Cloudflare [21, 34] provide general-
purpose third-party CDN services for a large number of content
providers, delivering a range of traffic classes such as web, videos,
and software downloads. While some CDNSs serve content from
larger edge server clusters in fewer locations, others deploy smaller
clusters in a large number of locations. However, all CDNs share
the basic principles of routing requests from users to proximal edge
servers that cache and serve popular content. While we use traces
from Akamai’s CDN for our empirical evaluation, the architectural
ideas for caching and content management proposed and studied in
this work are applicable across a wide range of CDN architectures.
Further, our open-sourced trace generation tool (SpaceGEN) and
simulation framework allow evaluation of other satellite-based
CDN architectures using production logs from other CDNS.

2.3 Feasibility of In-space Compute and Storage

CDN edge servers in space will require storage, compute, and power
on satellites. We discuss the feasibility of providing these resources
on board a satellite. Recent developments in the last decade have
shown significant potential for placing computational and storage
capabilities on satellites in space [7, 19, 41, 63, 70]. In-orbit com-
puting [7] explores the feasibility of augmenting satellites with
edge-compute capabilities, a constraint relevant for CDN integra-
tion. The same work describes the power, weight, and voluminous
feasibility of placing a high-end server with up to 2 TB storage on
Starlink satellites. Newer servers can hold even more storage and
compute with the same requirements, indicating that lesser volume
and weight will be required with advancing technologies in the
field. Some missions have already launched satellites with comput-
ing capabilities in space for various applications [22, 32, 60, 69]. For
example, both Planet [32] and European Space Agency [22] have
demonstrated the ability to run machine learning models onboard
small satellites using edge-computing devices (such as the NVIDIA
Jetson).

3 StarCDN System Architecture

We propose a novel space-based content delivery network, StarCDN,
that is specifically designed to work with LSNs. StarCDN deploys
CDN edge servers in the satellites to cache content while utilizing
the ISL links to fetch content from neighbors as needed. In designing
StarCDN, we aim for the following objectives:

e Reduce latency: Satellite network users should experience
similar latencies as terrestrial network users for accessing con-
tent.

951

Britain | Germany | Turkey

Britain 100% | 11%(49%) | 2%(15%)

Germany | 16%(45%) 100% 4%(31%)
Turkey | 23%(37%) | 34%(72%) 100%

Table 2: Percent of objects (traffic) accessed by users in the first
country (row) that are also accessed in the second country (column).
The content overlap is low since users in these European countries
speak different languages and seldom access the same content.

¢ Reduce uplink bandwidth utilization: Currently, all content
served to users must be sent from ground stations to satellites
via their uplinks. We aim to reduce uplink utilization by re-
ducing the need to fetch content from the ground. This goal is
motivated by the surge in demand for satellite-based services.
Over the past few years, the Starlink user base has grown from
approximately 1 million to over 4 million globally [50, 56], lead-
ing to increased contention for uplink and downlink bandwidth,
particularly in densely populated and high-traffic regions. In
response, Starlink has started to pause new subscriptions in
areas of high demand [16]. Reducing uplink utilization will free
up bandwidth that can be repurposed for additional users.

e Compatibility with current network architecture: We
aim to maintain compatibility with existing satellite network
architecture, i.e., we carefully model GSLs, ISLs, constellation
size, satellite orbits, and ground stations using publicly available
information about the Starlink network.

3.1 A Naive Design and Resulting Challenges

To motivate the design choices in StarCDN, we begin by considering
a naive satellite CDN design. Consider a constellation of Starlink
satellites where each satellite is equipped an edge server that can
cache content. Each cache follows the popular LRU eviction policy.
This setup mimics a terrestrial CDN design where each server
independently implements an LRU-like eviction policy. We analyze
the unique challenges that satellite networks pose for this setup.

3.1.1 Challenge 1: Dynamic Access Patterns due to Orbital Motion.
A LEO satellite orbits around the Earth in 90 minutes. Since the
Earth rotates around its axis every 24 hours (not synchronized with
the LEO satellite), the LEO satellite covers different parts of Earth
during each orbit (see Fig. 3 for an illustration). This implies that
each cache serves users in different geographies over time. We note
that this is a drastically different scenario compared to terrestrial
CDNs, where servers are stationary and typically serve users in an
area proximal to the server.

To understand the implications of this motion, we analyze the
geographic diversity in content access patterns. Specifically, we
collect and analyze production traffic traces of users accessing video
content from nine edge server clusters across the globe of the Aka-
mai CDN: Mexico City, Dallas, Atlanta, Washington D.C., New York
City, London, Frankfurt, Vienna, and Istanbul. We sample traces
(subsampled at 1%) from diverse cities around the world that have a
large population and user demand. The traces contain anonymized
information about each access made by users, including what con-
tent was accessed at what time and from which edge server. We

100
—8— Objects
Traffic

80

Percentage of overlap (%)

0 2000 4000 6000
Geographical distance (km)

8000

Figure 2: Percent of objects and traffic accessed by users in New York
that are also accessed by users at a different location. The overlap
decreases with the geographic distance of the location from New York.

sample more cities from the US because it has the highest Starlink
users today[18]. The whole trace consists of 423M video requests
(512TB) for 24M unique objects (24TB).

To quantify the impact of satellite motion, we study the overlap
between objects and the content access traffic from each pair of
countries with different official languages in Europe in Table. 2. We
note that different languages create noticeable traffic diversity even
within a single continent. These diverse regions can be traversed
and served by the same satellite within minutes.

Further, we plot the overlap in terms of unique objects and unique
volume of access traffic with respect to geographical distance to
New York in Fig. 2. Our analysis reveals several interesting in-
sights. First, for regions closer to New York (< 3000km), the overlap
is around 55% in terms of the objects served. This indicates that
even close cities like New York and Washington DC have non-
overlapping objects being requested by users. However, in terms of
traffic volume, around 90% of the traffic volume goes to objects that
are available in both adjacent locations. Second, across countries
that are more than 3000km apart, the overlap is fairly low both
in terms of unique objects served and the traffic volume. Even in
an English-speaking city like London, only about a quarter of the
traffic is also present in New York. This indicates high geographic
diversity. Traditionally, a CDN provider would provision dedicated
cache clusters for geographically distinct regions. However, the
same satellite can go from US to Europe within tens of minutes,
indicating the unique challenge of designing caching schemes for
satellites. By the time a satellite sees enough traffic to build a cache,
its orbital motion pulls it away to a different region.

Takeway: Rapid orbital motion of LEO satellites places them over
different geographic regions within minutes. These regions require
different content cached on the satellite.

3.1.2 Dynamic client-server relationships. A corollary of the orbital
motion discussed above is that client-server relationships constantly
evolve over time in satellite networks. In terrestrial CDNs, a map-
ping system is used to route a client’s (i.e., user’s) request to a
proximal edge cluster, either using the DNS system [13, 36] or IP
anycast [11, 73], and an intra-cluster “local” load balancer assigns
the client to an edge server within the chosen cluster. The server as-
signment of a client is generally stable since the server is stationary
and the clients are generally located within the same geographical

952

Figure 4: Two users with four satellites in view. Each user is connected
to one of these satellites by Starlink’s satellite link scheduler.

area. While a client may get assigned to multiple servers over time
due to changes in server and network conditions, these servers
typically cache the same regional content relevant to the clients.

However, LEO satellites orbit around the Earth at low altitudes,
and each of them can only cover a small region of Earth as com-
pared to GEO satellites. Satellite network providers usually build a
large satellite constellation to increase the coverage area. For ex-
ample, at any time instant, a Starlink client often has 10+ satellites
in view, and the Starlink scheduler is responsible for scheduling
client-to-satellite links [51]. We refer to the satellite scheduled for
a client as the first contact satellite, which changes rapidly. Re-
cent literature shows that the Starlink scheduler reconfigures the
user-satellite mapping every 15 seconds [51]. In general, in any
LEO network, the client-satellite mapping cannot last beyond a
few minutes. This means in satellite-based CDNS, it is impossible
to maintain a stable client-server mapping beyond few minutes.
There are two implications of this dynamic mapping. Multiple satel-
lites that serve the same area may need to cache and serve the
same objects redundantly, resulting in reduced cache storage effi-
ciency. Further, satellites need to evolve their cached content as the
geographical area changes.

Consider an example in Fig. 4. user-1 and user-2 are scheduled to
choose satellites D and B respectively, as the first contact satellites,
decided by the satellite link scheduler (all satellites in this figure
are in view and connectable for both users). Now, user-1 initiates a
request, which is resolved to the proximal edge server on satellite D.
Satellite D checks its local cache and serves the content if it’s avail-
able. Otherwise, it downlinks the request to terrestrial networks to
retrieve and cache the requested content in its local cache. What if
user-2 now requests the same content as user-1? The same process

will happen, and the cache server on satellite B will fetch and cache
the same content, without recognizing that this request can be ful-
filled by retrieving the content from the cache at the neighboring
satellite D through ISL links. Thus, the redundant storage of the
same content in both satellites decreases the overall cache storage
efficiency of the system, and user-2 may perceive high latency if
there is a cache miss at satellite B, resulting in ground-satellite
communications.

Takeaway: Dynamic client-server mappings may lead to redundant
storage of the same content in multiple caches, resulting in a reduction
of the overall cache storage efficiency. Further, it could also result in
greater latency during cache misses due to additional ground-satellite
communication.

3.2 StarCDN: Consistent Hashing to Reduce
Redundant Caching

To counter the dynamic-client server relationships, we propose a
consistent hashing scheme for partitioning cache content across
satellites. Consistent hashing is widely used in production storage
systems to provide load-balancing and fault tolerance [30, 36, 71].
Conceptually, consistent hashing involves hashing both servers and
objects to a unit circle. Each object is mapped to the next server
that appears clockwise on that unit circle. This allows the objects to
be divided among servers on a single cluster, reducing redundancy.
In terrestrial networks, consistent hashing is done across servers
located close to each other within a cluster as described in [36].

We cannot apply consistent hashing to the satellite use case as
is. Specifically, LEO satellites are typically small and do not support
many servers running simultaneously under the limited power,
size, and thermal constraints [7]. Moreover, even if we were to map
objects to different servers on a satellite, it would not solve the
redundant caching problem discussed before.

StarCDN proposes a satellite-specific variant of consistent hash-
ing. Similar to standard consistent caching, we partition the objects
into K disjoint buckets. Subsequently, each bucket is then mapped
to a different satellite. But how do we identify which bucket should
be mapped to which satellite? Formally, this problem can be mapped
to a graph coloring problem [29] for an arbitrary constellation topol-
ogy, with constraints imposed by the presence of ISLs and latency
requirements to fetch content from different satellites.

The Starlink topology is shaped in a grid pattern, which simplifies
the mapping problem. Inter-satellite links naturally lead to a grid
topology of satellites. Each satellite typically connects to four other
satellites (front, back, left, right). We map the K buckets on this
grid in a repeating VK x VK pattern. For example, we can map 9
buckets in a 3 X 3 pattern.

An example for K = 4 is shown in Fig. 5a where the four buckets
of content are stored in each 2 X 2 grid, for instance, the grid consist-
ing of satellites S1, N1, S2, and N2 stores the K = 4 distinct buckets.
Note that we cannot control which user talks to which satellite. This
falls within the purview of Starlink’s satellite link scheduler and
has various constraints. However, when a user requests an object
from its first-contact satellite (e.g., S1 in Fig. 5a), it can serve the
object if the object is in its designated bucket. If not, it can compute
the shortest path to a satellite with the object’s bucket (say N1) and
forward the request along that path. If this satellite (N1) has the

953

object (cache hit), it forwards the object to the first-contact satellite
(S1). If the satellite does not have the required object (cache miss),
it can request it from the ground and store it in its cache for the
future and also forward the object to the first-contact satellite (S1).
The first-contact satellite (S1), then, forwards the object to the user.

Our scheme has several advantages. First, it increases the cache
storage efficiency since each cache needs only cache (1/K)!" of the
objects, allowing more objects to be stored in space and increasing
the cache hit rate. Second, it reduces redundancy as each object is
only stored by the server that is assigned its bucket. If K satellites
serve a single region, they do not need to cache the same content.
Third, although there is an added latency to query an object from a
X

2

hops from the first-contact satellite. Finally, our consistent hashing
scheme accommodates any cache replacement scheme within each
server, including LRU (Least Recently Used), LFU (Least Frequently
Used), Sieve [74], and others.

neighboring satellite, all buckets are accessible in at most 2 l

How do we choose K? The choice of K is driven by three factors.
First, a small value of K increases the cache miss rate since a greater
fraction of content is assigned to each cache and the larger content
redundancy that is entailed. Second, a large value of K increases
the latency to access an object. Third, there are constraints due to
the constellation size, orbit design, and orbital motion. We find that
values of K = 4 and 9 are generally compatible with the Starlink
constellation. We evaluate this tradeoff in §5.3.

3.3 StarCDN: Relayed Fetch to Counter Orbital
Motion

Next, we discuss how StarCDN addresses the challenge of dynamic
shifts in the access pattern. Recall that the fundamental reason
for such a dynamic access pattern shift is the orbital motion of a
satellite. Unlike traditional CDNs, where the edge server remains
in a single location and serves users proximal to that location, a
LEO satellite is in rapid motion with respect to the surface of the
Earth. Intuitively, our goal is to create a flow of cached content in
the opposite direction of the orbital motion. This allows the cached
content accessed by users at a particular location to stay above that
location, while the server that caches the content keeps changing
due to the orbital motion. We call this technique relayed fetch, where
we allow a satellite to request objects from the neighboring satellites
with the same bucket mapped to them. For example, in Fig. 5a, N1
can request content from N3 on its right since it is its next nearest
neighbor with the same color/bucket. Such relays are only initiated
in response to a cache miss at N1.

One concern of using relayed fetch is the latency overhead. Each
one-way inter-orbital hop requires at least 2 ms, while an intra-
orbital hop needs 8 ms. Given the added latency of intra-orbital
links and the larger distance between them, StarCDN fetches data
only from inter-orbital neighbors, avoiding intra-orbital neighbors
to mitigate the high latency penalty associated with a cache miss.

To visualize inter-orbital links and the benefit of fetching from
them, we visualize two satellite trajectories in Fig. 3. It shows the
trajectory of two satellites three inter-orbit links away over one
period. Note that the red satellite follows a path very similar to
that of the green satellite (west inter-orbital neighbor of the red

N2 S N3
relayed
fetching

7@?‘
(on miss) ’f,

ISL ,’

ISL

;:«»

routeto
hash bucket, {

& &

1 S2
R/
Request

for object

in
g
iQ
is

(@)

satellite) traveled in the previous period. This means a satellite’s
west neighbor has the historical footprint of requests we want to
exploit.

Finally, we make a slight addition to our design to also allow satel-
lites to fetch from their east inter-orbital neighbor (e.g., between N1
and N3), since this has the same latency penalty as fetching from
the west neighbor. Our evaluation in §5 shows that this connection
is less likely to be useful compared to the rightward links, but it
doesn’t incur any additional latency in StarCDN and hence, we
choose to keep these links bidirectional.

Why not proactive prefetching? In our current design, we use
relayed fetch in response to a cache miss. An alternative strategy is
to proactively prefetch popular content from preceding satellites
when entering a populous region. It can create a similar backflow
of content to counter the effect of orbital motion. However, there
is a risk of prefetching content that is stale and is no longer being
requested by clients. We found this strategy to be less efficient than
relayed fetch in terms of hit rate. While relayed fetch incurs an
added latency, this latency only happens during the first request
for a new object. Once the object has been fetched, it can be stored
in the local cache. In contrast, if the proactively prefetched content
is not used, it will be a waste of cache space at the receiver, a waste
of power to transmit the data, and a waste of ISL bandwidth.

3.4 StarCDN: Robustness to Unavailability

StarCDN also consistently monitors the nearby satellite links and
the reachability of bucket IDs. ISLs today can last weeks [37] with
high stability. However, link unavailability is inevitable when satel-
lites commence maneuvers to avoid collisions [35]. Note that such
collision avoidance maneuvers are known in advance, as the satel-
lite network operator needs to plan for them. A different type of
failure is cache server unavailability, e.g., due to bringing down the
server for a software update. Cache server unavailability is also
common but transient [71].

StarCDN’s response to such failures depends on whether the
failure is transient or long-term (tens of minutes or hours). For tran-
sient failures, StarCDN simply reports a cache miss and forwards
the requests to the ground. For the long-term failures, StarCDN’s

0"":
4
N

0:::0‘
i N
N
&
3
3

954

(b)
Figure 5: (a) Consistent hashing routing and relayed fetching in StarCDN. (b) Orbital motion and ISLs of Starlink satellites.

consistent hashing scheme remaps the bucket assigned to the un-
available satellite to the next available satellite (this satellite is now
responsible for multiple buckets). Our approach temporarily leads
to uneven loads, but the time duration of such failures is small
enough that a larger reconfiguration of the consistent hashing
scheme isn’t needed. We evaluate our robustness to failures in §5.4.

4 SpaceGEN: Synthetic Trace Generator for
Satellite-based CDNs

In this section, we describe our trace generation tool, SpaceGEN,
that generates realistic synthetic traces of how LSN users access
content. Our goal is to generate long-term synthetic traces suitable
for simulating StarCDN and other satellite-based CDN designs from
limited real-world traces collected from the production CDN. Our
tool builds on the theory of footprint descriptors (FDs). FDs are traf-
fic models that capture the manner in which users access content
and were first proposed in [58]. FDs can predict cache hit rates for
various traffic classes, such as videos, web, and downloads, and are
used for cache provisioning in Akamai’s production CDN. Further,
variants of FDs were used to generate synthetic logs that are prov-
ably similar to production logs and incorporated in the synthetic
trace generation tools TRAGEN [44] and JEDI [45]. Unlike prior
tools that generate synthetic traces for an individual cache at a specific
location, SpaceGEN generates synthetic traces collectively across mul-
tiple locations that are suitable for simulating satellite-based CDNG.
We further show that the synthetic trace and the production trace
yield similar hit rates when performing a cache simulation of a
satellite traversing these locations. We have made this tool and
the associated traffic models derived from the production CDN
available to the research community to facilitate further research
in the satellite-based CDN domain.

4.1 Traffic Models for Satellite-based CDNs

Our models capture essential statistics such as popularity, size,
overlap, and access patterns of the objects requested by LSN users
using the following traffic models: (i) Global Popularity Distribution
(GPD), and (ii) Popularity-Size Footprint Descriptor (pFD). The
GPD captures the correlation between objects and requests across

different locations, while the pFD describes the access patterns
of objects from a single location. We compute the GPD and pFDs
models from the production traces of the Akamai CDN. We have
made these models available for public download.

Global Popularity Distribution (GPD). The GPD captures the
joint distribution of an object’s popularity and size across multiple
locations. Formally, it is expressed as P(p1,...,pn,z), Where p;
represents the popularity of the object at the ith location, and z
denotes the size of the object in bytes. Popularity p; is defined as
the number of requests made for the object in the production trace
at location i. Unlike a normalized value, this definition of popularity
is adopted by synthetic trace generation tools such as TRAGEN
and JEDL Thus, P(p1, ..., pn, z) represents the probability that an
object has size z and popularity p; at location i.

Popularity-Size Footprint Descriptor (pFD). The pFD cap-
tures the request access patterns, popularity, and size of objects
requested from a single location. It has been shown to capture:
(i) Object-level properties: including the popularity distribution,
size distribution, and request-size distribution, and (ii) Cache-level
properties: such as request hit rate curves and byte hit rate curves
of the trace. Formally, pFD is described as a probability distribution
P(p,z,s,t), where: (i) p and z represent the popularity and size of
an object in the trace (ii) s denotes the number of unique bytes re-
quested between consecutive accesses of an object (iii) ¢ represents
the inter-arrival time, i.e., the time between consecutive accesses
of an object. The number of unique bytes, s, that are requested
between consecutive accesses is known as the stack distance [45].

4.2 Trace Generation Algorithm

In this section, we present the synthetic trace generation algorithm
used by SpaceGEN. The algorithm takes as input the GPD and
the n pFDs derived from the production trace of each location. It
generates n synthetic traces of user-specified lengths, with each
trace corresponding to a specific location.

Initialization phase. We initialize an empty cache C; corre-
sponding to each location i € n. To fill the caches, we iteratively
create objects and assign them popularities and a size by sampling
from the GPD. For each object o, the sample gives the popularity
vector p and a size z where p; denotes the popularity of the object
in the i*" location. If p; > 0, we add o to C;. We repeat till each
cache Cj, is at least as large as the maximum stack distance in the
pFD of the ith location.

Generation phase. We generate the n synthetic traces, each
corresponding to a location i € n, by the following procedure. First,
for each location i, we compute P;(s|p, z) for all possible values
of p and z from the i’ h pFD. During each iteration of the trace
generation phase, we examine the object at the top of the cache C;.
We add a request to the object in the synthetic trace. Let the object’s
popularity be p and its size be z. We then sample a stack distance
s from P;(s|p, z). If the object has already received p requests in
the synthetic trace, it is removed from the cache. Otherwise, it is
removed from the top of the cache and reinserted within C; at a
stack distance s from the top. Finally, we assign timestamps to the
traces based on either the average data rate derived from the pFD
or a more fine-grained data rate computed from the real traces. We
describe the algorithm in detail in Algorithm 1 in Appendix A.1.

955

4.3 Properties of the Synthetic Trace

1.0 1.0
0.8 i 0.8
0.6 0.6
[3
a a
) 9]
0.4 0.4
0.2 ~—e— Production trace 0.2 —e— Production trace
=+ Synthetic trace =+ Synthetic trace
0 2 3 4 5 6 7 8 9 00 2 3 4 5 6 7 8 9

Object spread Traffic spread

(a) Object spread across locations in the syn- (b) Traffic spread across locations in the syn-
thetic and production traces. thetic and production traces.

1.0 1.0

—e— Production trace

S
=

Request hit rate (RHR)
2 g

Byte hit rate (BHR)
g =

°
S

s
=

e
o

~—e— Production trace

—— Synthetic trace —+— Synthetic trace

200 400 600

Cache size (GB)

800 1000 200 400 600

Cache size (GB)

800 1000

(c) Request hit rates in a CDN LRU simula- (d) Byte hit rate in a CDN LRU simulation
tion for different cache sizes. for different cache sizes.

1.0 1.0

=
3
3

=
>
o
>

=
=

Request hit rate (RHR)
°
s

Byte hit rate (BHR)

=
i
i

~—&— Production trace
=+ Synthetic trace

=—&— Production trace
—+— Synthetic trace

o
o

20 40 60 80
Cache size (GB)

100) 20 40 60 80
Cache size (GB)

100

(e) Request hit rate of a satellite equipped (f) Byte hit rate of a satellite equipped with
with an LRU cache for different cache sizes. an LRU cache for different cache sizes.

Figure 6: Comparison of synthetic and production traces.

We will now show that the synthetic trace generated by Algo-
rithm 1 is similar to the production trace. The object spread dis-
tribution and the traffic spread distribution of the synthetic and
production traces are shown in Fig. 6a and Fig. 6b, respectively.
Here, the object spread is the number of locations an object is ac-
cessed from and we observe that both the traces have similar object
spreads. The traffic spread is the object spread weighted by the size
and the number of requests made to the object. We observe that
the traffic spread of the production and synthetic traces are similar.

In Fig. 6c (resp., Fig. 6d), we show that the request hit rates (resp.,
byte hit rate) of a cache simulation of a traditional CDN server using
LRU yield similar results for the synthetic and the production trace.
In particular, we observe an average difference of 0.4% in request
hit rate (resp., 0.3% in byte hit rate) across all the cache sizes we
simulated. Next, we simulate satellites in motion that are equipped
with an LRU cache. In this case, we observe an average difference
of 2% in request hit rate (resp., 1% in byte hit rate) between the
synthetic and production traces across all cache sizes we simulate.
We observe similar results when we simulate the StarCDN-Fetch
architecture. Results are in Fig. 13c and Fig. 13d in Appendix A.1.
Thus, we conclude that the synthetic traces can be used in lieu of
the production traces for our evaluation.

5 Empirical Evaluation

We discuss our evaluation of StarCDN below.

5.1 Experimental Setup

CDN traces: To evaluate StarCDN over a sufficiently long period,
we create 5-days-long synthetic traces using the SpaceGEN trace
generator discussed in §4. SpaceGEN generates synthetic traces
from traffic models derived from real-world Akamai production
traces for the video traffic class described in §3.1. In total the syn-
thetic traces for the video traffic class have 2 billion requests and
2.5PB content traffic. In addition, in §5.5, we also extend the evalu-
ation to the web and download traffic classes by using SpaceGEN
with the relevant traffic models for these classes.

Simulation setup: We collected up-to-date TLE data from Ce-
lesTrak [12] for Starlink-53-Gen-1 satellites’ orbital information and
orbital shell information from Starlink.sx[39]. Even though Star-
link Gen1 satellites do not support ISLs, the Starlink Gen2 satellite
constellation is still in the launch phase and not fully operational.
Thus, we cannot obtain full orbital information from the Starlink
Gen?2 constellation. Instead, we use Starlink-53-Gen-1 as a repre-
sentative of Starlink’s constellation topology. We infer the ISLs to
both inter-orbital and intra-orbital neighbors using the shell infor-
mation. If the neighbor is out of service or out of slot, we assume
the link cannot be established. We simulate 1,170 satellites in 72
orbits inclined at 53 degrees.

We implemented a trace-driven simulator composed of Microsoft’s
CosmicBeats [38, 48] simulator for the orbital motion, client link
scheduling, and a multi-process cache replayer to mimic real-world
asynchronous CDN accesses. For each CDN user node in Cos-
micBeats, we associate a synthetic trace from SpaceGEN that rep-
resents user requests for content from that geographic location.
CosmicBeats determines the satellites available in view at each
location and splits all requests within the discrete time step to dif-
ferent satellites. The time step of CosmicBeats is set to 15 seconds,
aligned with the Starlink global scheduler’s reconfigure interval
[51]. CosmicBeats outputs logs of object access for every satellite,
which are loaded into our cache replayer. The cache replayer spawns
a process for each satellite that uses TCP to mimic ISLs. Finally, the
replayer orchestrates the cache replay and allows satellite processes
to simulate the real-world request traffic. We open-sourced the sim-
ulation framework, including the configuration files for running
CosmicBeats. User can also generate their own configuration files
for their dataset and new application logic.

Baselines: We compare StarCDN with two baselines. (a) Naive
LRU places LRU caches on LEO satellites (as proposed in past
work [7, 8]). We evaluate this baseline using the same simulation
framework. (b) Static Cache is an idealized baseline, i.e., it assumes
that there is no orbital motion and satellites stay static. The user-
satellite mapping is static. This baseline is, in practice, unachievable.
Yet, we plot this baseline as the north star for satellite-based CDN?s.

5.2 Cache Hit Rate

We run a simulation across multiple baselines for different cache
sizes and plot the hit rate curves in Fig. 7. Past work [7] has re-
ported the feasibility of placing a 2TB cache on satellites. Our traffic

956

traces are sampled at 1% from production CDNs by objects. The
production traces were collected for a duration of 1 day, and were
collected at the same time for all the locations. We have accounted
for time differences in each location by collecting traces from the
locations that span the same 24 hours. These traces were collected
from edge servers that serve video traffic. Since our traces’ traffic
rate is sampled by 1%, we also shrink the cache size in our exper-
iment to reflect the hit rate when a larger traffic load is served
by satellite-based CDN in the future. Therefore, our target cache
size would be 20 GB. We vary the cache size from 10 to 100 GB to
cover a span of configurations. In Fig. 7, we have five curves — one
each for Static Cache, StarCDN, StarCDN-Fetch (StarCDN without
relayed fetching), StarCDN-Hashing (StarCDN without hashing),
and Vanilla LRU. We further study the performance of two different
numbers of hash buckets K = 4 and K = 9.

First, we plot the request hit rate for K = 4 and K = 9 in Fig. 7a
and Fig. 7c respectively. Request hit rate captures the percentage
of requests being served from the cache. A higher hit rate implies
better quality of service for the user (e.g., lower latency). As shown
in the plot, StarCDN significantly outperforms the LRU baseline.
At a cache size of 50 GB and K = 4, for example, LRU achieves a
request hit rate of 60% and StarCDN achieves a request hit rate of
71%. This is because LRU finds it hard to deal with the dynamic
data access patterns caused by the orbital motion. Similar trends
are visible for K = 9. The maximum gap in request hit rate between
LRU and StarCDN is 15% (for cache size=60 GB and K = 9).

Similar trends are visible in terms of the byte hit rate plotted in
Fig. 7b and Fig. 7d. Byte hit rate captures the percentage of bytes
being served from the cache. A higher byte hit rate implies a lower
bandwidth utilization between ground and space. StarCDN can
significantly reduce the bandwidth utilization compared to a simple
LRU cache.

Finally, we plot the uplink bandwidth utilized by different schemes
in Fig. 8. This is normalized to the current state-of-the-art, where
all the data needs to be fetched from the ground. LRU uses 30-35%
of the bandwidth compared to fetching everything from ground,
which already demonstrates the benefits of caching in space. Star-
CDN can improve it even further and uses just 20-25% of the uplink
bandwidth, demonstrating significant savings for LSN operators.

5.2.1 Benefits of Consistent hashing We evaluate how consistent
hashing affects the request hit rate and byte hit rate when serv-
ing request traffic. Compared to Vanilla LRU, StarCDN-Fetch (i.e.,
StarCDN without fetch) results in an average increase of 6 points
in request hit rate and an average of 4.8 points in byte hit rate, as
shown in Fig. 7a and Fig. 7b. Fig. 7c and Fig. 7d illustrate that when
we have K = 9 hash buckets, the average improvement of request
hit rate (byte hit rate) grows by 9.7 points (7.8 points). A simple
impact of doing inter-satellite hashing and satellite cache partition-
ing is to increase the effective cache size in space. However, the
benefit of StarCDN’s consistent hashing is beyond improved cache
size. Consider Fig. 7c, where we have K = 9 hash buckets. The
effective cache size increases by nine times. However, the request
hit rate of the LRU baseline at 90GB (61.3%) is 3.1 points smaller
than StarCDN hashing at 10GB (64.4%). This is because adjacent
users could be scheduled to different satellites; therefore, identical
requests might be processed in different caches if we are running

~0.85 0.85 ~0.85 0.85
£ 050 080 £ 050 2080 ik
& z R ERRT T ¥ & . ! a A AR
5075 8 0.75 e 5 0.75 B B i R N R e e
5 [S e 3 > P e e . s £ A b > Cm-
£070 — +— 20701 % u-W — 2070 ¢t L m-m® = 0701 —
= 465 "l g-me--M 0 Static Cache = 0.65 : 4 - 4% —& sutic Cache = 65 ./" —&— Static Cache = 0.65] % 4 4= 4 - % —o— Static Cache
w B A StarCDN = A StarCDN 70 A StarCDN = A StarCDN
20601 % 4= 4— 4 -B SwCDN-Fetch £0.60 ~B- StarCDN-Fetch S 0.60 4= 44 -B SwCDN-Fetch £ 0.60 -B- StarCDN-Fetch
5 ¥ -+ StarCDN-Hashing 23] StarCDN-Hashing 53 (4 -+ StarCDN-Hashing m StarCDN-Hashing
2 055 —#- LRU 0.55 -4 LRU 2 0.55 —4- LRU 0.55 —4- LRU

050 20 40 60 80 100 050 20 40 60 80 100 0.50 20 40 60 80 100 050 20 40 60 80 100

Cache size (GB) Cache size (GB) Cache size (GB) Cache size (GB)

(a) Request hit rate (K = 4) (b) Byte hit rate (K = 4)

(c) Request hit rate (K = 9) (d) Byte hit rate (K =9)

Figure 7: Request hit rate curve and byte hit rate curve for StarCDN variants, the LRU baseline, and the ideal static cache.

35
2 |. | '
ul RN
s b . s
S HBEBRILILINAI
=“HhH 1NN
RN R N
5 I I I I I I i is
10 } EEm LRU
I I I I I I 7% StarCDN-Hashing
3 I StarCDN-Fetch
I I I I I EEE StarCDN
278 2 2 8 2 & 3 =3 s
Cache size (GB)

Figure 8: Uplink usage of StarCDN wvariants (K = 9) schemes and
the LRU baseline, normalized with respect to Starlink with no cache.

60 -0.750
% -0.725
_
= 0700
£ z
540 -0.675 o
Q - o
5 =
530 -0.650
=
o
£ -0.625 %
520 E
g 0.600 3
o~
10
-0.575

0.550

=

5 10 15 20 25
Number of buckets (K)

Figure 9: Worst case routing latency to the satellite hosting the cor-
rect hash bucket (points) and request hit rate (curve) with respect to
number of buckets K. Both latency and hit rate increase with K.

Vanilla LRU (e.g., User-1 and user-2 are scheduled to satellite D
and B in Fig. 4). StarCDN addresses this problem by hashing and
routing to ensure identical content will be served by the same cache
(e.g., satellite D in Fig. 4), resulting in a higher hit rate.

5.2.2 Relayed fetch Relayed fetching between replicas leads to
a 4.8 point (4.1 point) improvement in RHR and a 4.1(3.9) point
improvement in BHR on top of StarCDN-Fetch with K = 4 (K = 9).

In §3.3, we describe how the relayed fetching utilizes the his-
torical traffic footprint to boost performance. To evaluate this, we
monitor the availability of a request in inter-orbital neighbors when
a cache miss happens in Table. 3. In StarCDN, a request to the near-
est inter-orbital neighboring replicas is sent when there is a cache

Cache | Westonly | East only Both
size (GB) | Req Byte | Req Byte | Req Byte
10 475 475 | 314 285 | 11.9 8.86
50 61.6 623 | 30.1 293 | 146 13.6
100 64.7 649 | 274 265 | 147 138

Table 3: Number of requests(Mil) and bytes(TB) available in inter-
orbital neighbors with four hashing buckets during a miss

== == Terrestrial == = Terrestrial

Co4 = = Starlink ©o04 — = Starlink
—— Static Cache —— Static Cache
0.2 ——— StarCDN 0.2 / —— StarCDN
¥ = StarCDN-Fetch 4| == StarCDN-Fetch
0.0 = 0.0 =
0 20 40 60 80 0 20 40 60 80 100

Latency (ms) Latency (ms)

(a) Latency CDF of StarCDN variants with (b) Latency CDF of SerDN, variants with
K = 4 hash buckets, Terrestrial CDN, regu- K=9 hl,lSh buckets, Terrestrial ,CDN’ regu-
lar Starlink (no cache), and the Static Cache. lar Starlink (o cache), and Static Cache.

Figure 10: Latency performance of StarCDN.

miss. If the content is available in neighbors, it will be fetched and
served from space. As the cache size grows, more and more requests
can be fulfilled by the left neighbor alone instead of the right or both
neighbors. This is because the left neighbor has recently visited the
same location. A large fraction of this benefit comes from the fact
that the satellite is able to access a preceding satellite’s cache.

5.3 Latency

To evaluate the latency of StarCDN, we estimate the end-to-end
propagation delay between a user initiating a request and that
request being fulfilled either from space or terrestrial CDN. To the
best of our knowledge, Starlink does not reveal any queueing delay
and processing delay in their satellites. The baselines to which we
are comparing are the terrestrial CDN and regular Starlink latency
reported by [8] based on data analysis from the Cloudflare AIM
dataset. The latency in the baseline is idle latency, which means the
impact of queueing delay is minimized in the dataset, making our
latency comparable. We plot the latency CDF in Fig. 10. The median
latency of StarCDN is 22ms as compared to 55ms in regular Starlink
with no cache bringing us closer to the performance of terrestrial
CDNes (serving terrestrial users). Like terrestrial and Starlink CDN
access, StarCDN has a long tail latency due to cache misses. When

957

0.82 0.82
2080 080
Z078 % 0.78
2076 20.76
2074 § 0.74 I_-El
S 07 Eo0mn
2 a
o0 £.0.70
£0.68 El 0.68

0.66 0.66

2 3 4 1 2 3 4

1 3
Number of hash buckets satellites serve Number of hash buckets satellites serve

(a) Request hit rate (b) Byte hit rate

Figure 11: Hit rate performance of satellites serving different numbers
of hash buckets.

a cache miss occurs in StarCDN, all routings using ISLs become an
overhead, and requests must be downlinked to terrestrial networks.

There is a tradeoff between the number of hash buckets and
latency. Due to the limitation of grid-shaped ISLs, the more buckets
we have, the more routing overhead is required to route requests to
the correct hash buckets. Fig. 9 illustrates the worst routing latency
for consistent hashing with no failure and the request hit rate when
a 10 GB cache is deployed. As K grows beyond 9, the worst-case
latency overhead becomes unaffordable (40ms) for routing even if
it yields an additional hit rate of upto 5%. When we have K = 9
buckets, the routing overhead for consistent hashing remains the

same as when we have K = 4 buckets (ZL\/TEJ is the same for both
configurations). This is reflected in StarCDN-Fetch in Fig. 10a and
10b where K = 9 has strictly better latency than K = 4. However,
K = 9 can incur additional overhead for relayed fetching due to
more ISLs required to reach a replica, which explains the worse tail
latencies.

5.4 Fault Tolerance

We evaluate the robustness against unavailability through real-
world satellite constellation status. When we collect the orbital
shell information, we identify 126 out of 1296 (9.7%) active satellites
that are out of slots. These unavailable satellites result in 438 broken
ISLs among available satellites. Recall that StarCDN hashes every
request to the correct bucket. Without unavailability, each satellite
will serve one hash bucket. However, as ISLs become unavailable,
some satellites will be remapped to serve multiple hash buckets
due to StarCDN’s consistent hashing scheme. We experimented
StarCDN with nine hash buckets equipped with 50GB cache. We
plot the hit rate of satellites serving different numbers of hashing
IDs in Fig. 11. When a satellite serves more hashing IDs due to
unavailability, the request hit rate (byte hit rate) drops up to 7
percentage points (5 percentage points). While this is a noticeable
drop, StarCDN still saves 74% of uplink bandwidth in comparison
with not using StarCDN.

5.5 Evaluation of Web and Download Delivery

The prior sections focus on video content delivery. Video content
accounts for a large fraction of the bits served by a CDN. However,
CDNs serve a wide range of traffic classes [58], such as websites
and software downloads. Different traffic classes have different user
access patterns, and object size distributions, and hence different

958

caching properties. Therefore, it is important to evaluate and un-
derstand the performance of StarCDN for traffic classes other than
videos, such as web and download traffic.

In this section, we focus on request hit rate and byte hit rate
as they are crucial metrics directly correlated with uplink usage
and user-perceived latency. Using SpaceGEN, we generate 5-day-
long synthetic traces from Akamai’s production traces. Our web
synthetic traces have 2 billion requests for a total of 642TB of
content, and download traces have 472 million requests for a total
of 372TB of content. Compared to our video traces, the total amount
of traffic and content footprint for both web and downloads is much
lower. Consequently, the hit rate curves increase more gradually
with cache size.

We illustrate StarCDN’s hit rate performance in Fig. 12. For both
content types, StarCDN outperforms the LRU baseline noticeably.
Particularly in Fig. 12d, StarCDN boosts the byte hit rate for more
than 30%. Further, as expected, the Static Cache provides an ideal
upper bound of the cache hit rates, and fewer cache buckets (K = 4)
provide less hit rate than more cache buckets (K = 9).

6 Related Work

6.1 LEO Satellite Networks

LSNs have been greatly studied in the last decade with the emer-
gence of services like Starlink, Oneweb and Kuiper. These networks
are inherently dynamic and bandwidth-constrained due to satellite
speeds [65, 68], frequent satellite handovers, and weather-induced
variations [33]. Consequently, many works [28, 61, 62, 66] have
measured and studied performance optimization on different layers
of the networking stack.

Our work focuses on the broader domain of in-orbit computing.
Past work, such as [7, 19, 64], has first proposed the idea of in-orbit
computing in satellite networks for multiple applications such as
CDNes, analysis of satellite imagery, etc. These designs leverage the
emerging storage and compute capabilities in small LEO satellites.
Recently, [8, 27] conducted extensive measurements to identify the
shortcomings of terrestrial CDN providers in the context of LSNs
(discussed in §1). Our work goes deeper into CDN architecture and
design than past work in this space. We collect real-world traffic
traces from multiple locations on the globe. Unlike past work, we
propose a specific architecture for satellite-based CDNs, design new
techniques, and evaluate these techniques using real-world traffic
traces. In addition, we design a synthetic traffic generator that can
be used to build new satellite-based caching systems.

6.2 CDNs and Caching Policies

There is extensive work in caching algorithms [3, 4, 6, 14, 31, 75]
which make caching decisions based on various factors like popular-
ity, object size, geography, time, cost, etc. [6, 13, 46, 57] to improve
cache performance [5, 49, 58]. CDN’s infrastructure has also been
extensively studied. Leading companies like Cloudflare, Google, and
Akamai publish their infrastructure designs in detail[17, 23, 24, 36].
Our work is orthogonal to these lines of work. We focus on the
architecture of CDNs in LSNs and design new techniques to counter
orbital motion, which is unique to LSNs. We choose LRU as our
eviction algorithm of choice due to its simplicity and use in practical
deployments. Besides eviction policies, we focus on key aspects of

S 71
A0,9 0.9 A0.9 s 4‘»_"_”‘ 09— P G— ry
- === Y e Y i
208 Eos PR a— Fosp o
Py a - = — 8 —8 —= Q - a ¥ A=
507 207 507 207
- s = s -
= 06 ~A- Static Cache(K=4) = 06 -4~ Static Cache(K=4) =06 -4~ Static Cache(K=4) = 0.6 ~4- Static Cache(K=4)
% 0] g —&— SrCDN(K—4) =9 —A— StarCDN(K=4) 3 | A SwCDNK) = —A— StarCDN(K=4)
E —=- LRU 2 - LRU E = LRU g = LRU
305 -4~ Static Cache(K=9) M 0.5 -4~ Static Cache(K=9) 305 -4~ Static Cache(K=9) M'0.5 -4~ Static Cache(K=9)
[~4— StarCDN(K=9) ~4— StarCDN(K=9) ~ ~4— StarCDN(K=9) T SwCDNK)
04 0.4 0.4 04
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
Cache size (GB) Cache size (GB) Cache size (GB) Cache size (GB)

(a) Request hit rate for web traffic (b) Byte hit rate for web traffic

(¢) Request hit rate for downloads traffic

(d) Byte hit rate for downloads traffic

Figure 12: Request hit rate curve and byte hit rate curve for web and downloads traffic

content fetching that are uniquely helpful in an LSN context. While
our work on synthetic trace generation is inspired by previous
work [44, 45], we are the first to model the geographic diversity
across multiple locations in synthetic traces, as described in §4.

7 Limitations and Future Work

In this section, we discuss some limitations in our simulation frame-
works and trace generator, and future work in trace generation and
satellite-based CDNSs.

Cross-location Temporal Traffic Correlation: One limitation
of our trace generator and traffic model is that it does not fully
capture some subtle temporal correlations that are possible between
different locations. For instance, a hot news item on CNN may
become popular a few hours later in California than in Boston, due
to the time difference. However, as we showed earlier, the hit rate
gap between production and synthetic traces for satellite-based
caches is very small, providing evidence that these correlations
have a limited effect on cache performance.

Discrete-time Simulator: Due to the inherent limitations of the
discrete-time simulator, our current simulation framework does not
model disconnections during object transfer. When we replay the
cache trace at each satellite, it will only yield a cache hit or a cache
miss. A Starlink satellite triggers a handover every few minutes,
thus incurs a potential transmission failure. Capturing this kind
of behavior requires a complicated simulator. We left a more fine-
grained LEO satellite simulator with link-layer simulation capability
and the impact on critical transmission failure as a future work
direction.

Constellation-CDN Co-design: In designing StarCDN, we model
the Starlink network as it is deployed, based on publicly avail-
able information. However, there can be an alternate design which
jointly optimizes constellation design and caching strategies, e.g., by
modifying ISL topologies dynamically or changing ground-satellite
mappings in response to cache misses. We do not explore such de-
signs because constellation design is governed by multiple factors,
such as regulation, feasibility, launch costs, etc. Therefore, we opt
for independent designs for constellation and caching.

New Applications: Orbital motion of LEO satellites creates chal-
lenges for multiple layers of the stack. With the emergence of
direct-to-cell services, we envision that maintaining state for users
in a geographic region, as the underlying containers of the data
move, will emerge as a challenge for satellite-based cell services.

959

We believe this is an important area of future work and will require
even more stringent latency guarantees.

Security and DNS: TLS and relevant encryption technologies
are crucial for modern network applications. As described in [42],
edge servers host cryptographic keys used for terminating TLS
connections with a key management infrastructure (KMI). Similarly,
a fast, efficient DNS infrastructure to resolve a client to the first-
contact satellite also plays a vital role in the actual deployment of
the system. We believe these are important topics for future work.

Co-optimizing CDNs and LSNs: An intermediate design between
today’s CDNs and StarCDN could be to place edge servers co-
located with ground stations. While this design can be implemented
today and improve QoE for users, it may not significantly reduce
ground-satellite network utilization and user-perceived latency.
However, jointly optimizing the traffic routing and content caching
decisions of LSNs and terrestrial CDNs is worth exploring from
both a performance and cost perspective.

8 Conclusion

We present StarCDN, a novel satellite-based CDN architecture that
enables content to be cached efficiently in edge servers deployed in
space. StarCDN implements mechanisms for placing and fetching
content in satellite-based caches to reduce user-perceived latency
and optimize the utilization of ground-to-satellite links. We also
develop the first open-source trace generator, SpaceGEN, that can
generate realistic synthetic traces of content access from a globally
distributed set of users. We hope this tool and our dataset can
promote future satellite-based CDN and caching research.

Ethical concerns — Our work uses anonymized production CDN
traces and raises no ethical concerns.

Acknowledgment

We thank our shepherd and the anonymous reviewers for their
valuable feedback. The work in this paper was partially funded by
NSF Grants # 2237474, # 2106463, and # 1901137. We are grateful to
the members of the wireless networking group at UIUC for feedback
on early drafts.

References

[1] Vijay Kumar Adhikari, Sourabh Jain, Yingying Chen, and Zhi-Li Zhang. 2012.
Vivisecting youtube: An active measurement study (INFOCOM 2012).

[2] Amazon. 2025. Project Kuiper. https://www.aboutamazon.com/what-we-do/
devices-services/project-kuiper.

https://www.aboutamazon.com/what-we-do/devices-services/project-kuiper
https://www.aboutamazon.com/what-we-do/devices-services/project-kuiper

=
A=A

=
—

[12]
[13

[14

[15

[16]

[17]

[18

[19

[20]

[21

[22

[23]

[24

[25]

[26]

[27

[28

[29]

w
)

[31]

[32

Ismail Ari, Ahmed Amer, Robert Gramacy, Ethan L. Miller, Scott A. Brandt, and
Darrell D. E. Long. 2002. ACME: Adaptive Caching Using Multiple Experts.
Proceedings in Informatics (2002).

Nathan Beckmann, Haoxian Chen, and Asaf Cidon. 2018. LHD: Improving Cache
Hit Rate by Maximizing Hit Density (NSDI 2018).

Daniel S. Berger. 2018. Towards Lightweight and Robust Machine Learning for
CDN Caching (HotNets *18). Association for Computing Machinery.

Daniel S. Berger, Ramesh K. Sitaraman, and Mor Harchol-Balter. 2017. AdaptSize:
Orchestrating the Hot Object Memory Cache in a Content Delivery Network
(NSDI 2017).

Debopam Bhattacherjee, Simon Kassing, Melissa Licciardello, and Ankit Singla.
2020. In-orbit Computing: An Outlandish Thought Experiment? (HotNets 2020).
Rohan Bose, Saeed Fadaei, Nitinder Mohan, Mohamed Kassem, Nishanth Sastry,
and Jorg Ott. 2024. It’s a bird? It’s a plane? It’s CDN!: Investigating Content
Delivery Networks in the LEO Satellite Networks Era (HotNets 2024).

Rohan Bose, Nitinder Mohan, and Jorg Ott. 2024. Poster: Twinkle, Twinkle,
Streaming Star: Illuminating CDN Performance over Starlink (IMC 2024).
Business Insider. 2024. Elon Musk’s Starlink Satellites and Internet Services. https:
//www.businessinsider.com/elon-musk-starlink-satellites-internet. (2024).
Matt Calder, Ashley Flavel, Ethan Katz-Bassett, Ratul Mahajan, and Jitendra
Padhye. 2015. Analyzing the Performance of an Anycast CDN (IMC 2015).
Celestrak. 2025. celestrak.org. https://celestrak.org/.

Fangfei Chen, Ramesh K. Sitaraman, and Marcelo Torres. 2015. End-User Mapping:
Next Generation Request Routing for Content Delivery (SIGCOMM 2015).

Jiayi Chen, Nihal Sharma, Tarannum Khan, Shu Liu, Brian Chang, Aditya Akella,
Sanjay Shakkottai, and Ramesh K Sitaraman. 2023. Darwin: Flexible Learning-
based CDN Caching (SIGCOMM 2023).

CISCO. 2011. White Paper: The future of networking for high-throughput
data centers. https://twiki.cern.ch/twiki/pub/HEPIX/TechwatchNetwork/
HtwNetworkDocuments/white-paper-c11-741490.pdf.

Citizen Digital. 2023. Starlink Pauses New Subscriptions in Nairobi, Cites
Network Overload. https://www.citizen.digital/tech/starlink-pauses-new-
subscriptions-in-nairobi- cites-network-overload-n352395?utm_medium=
Social&utm_source=Twitter#Echobox=1730728917

Cloudflare. 2025. Content Delivery Network (CDN) Reference Architecture.
https://developers.cloudflare.com/reference-architecture/architectures/cdn/
Cloudflare. 2025. Starlink AS geographical traffic distribution. https://
radar.cloudflare.com/traffic/as14593.

Bradley Denby and Brandon Lucia. 2020. Orbital Edge Computing: Nanosatellite
Constellations as a New Class of Computer System (ASPLOS 2020).

John Dilley, Bruce M. Maggs, Jay Parikh, Harald Prokop, Ramesh K. Sitaraman,
and William E. Weihl. 2002. Globally Distributed Content Delivery. IEEE Internet
Comput. (2002).

Marwan Fayed, Lorenz Bauer, Vasileios Giotsas, Sami Kerola, Marek Majkowski,
Pavel Odintsov, Jakub Sitnicki, Taejoong Chung, Dave Levin, Alan Mislove, et al.
2021. The Ties that un-Bind: Decoupling IP from web services and sockets for
robust addressing agility at CDN-scale (SIGCOMM 2021).

Gianluca Giuffrida, Luca Fanucci, Gabriele Meoni, Matej Bati¢, Léonie Buckley,
Aubrey Dunne, Chris van Dijk, Marco Esposito, John Hefele, Nathan Vercruyssen,
Gianluca Furano, Massimiliano Pastena, and Josef Aschbacher. 2022. The -Sat-1
Mission: The First On-Board Deep Neural Network Demonstrator for Satel-
lite Earth Observation. IEEE Transactions on Geoscience and Remote Sensing
(2022).

Google. 2025. Cloud CDN overview. https://cloud.google.com/cdn/docs/
overview

Google. 2025. Media CDN overview. https://cloud.google.com/media-cdn/docs/
overview

Syed Hasan, Sergey Gorinsky, Constantine Dovrolis, and Ramesh K. Sitaraman.
2014. Trade-offs in optimizing the cache deployments of CDNs (INFOCOM 2014).
Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark
Watson. 2014. A buffer-based approach to rate adaptation: Evidence from a large
video streaming service (SIGCOMM 2014).

Liz Izhikevich, Reese Enghardt, Te-Yuan Huang, and Renata Teixeira. 2025. A
Global Perspective on the Past, Present, and Future of Video Streaming over
Starlink (SIGMETRICS 2025).

Liz Izhikevich, Manda Tran, Katherine Izhikevich, Gautam Akiwate, and Zakir
Durumeric. 2024. Democratizing LEO Satellite Network Measurement. Proc.
ACM Meas. Anal. Comput. Syst. (2024).

Tommy R Jensen and Bjarne Toft. 2011. Graph coloring problems. John Wiley &
Sons.

David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and
Daniel Lewin. 1997. Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web (STOC 1997).

Vadim Kirilin, Aditya Sundarrajan, Sergey Gorinsky, and Ramesh K. Sitara-
man. 2019. RL-Cache: Learning-Based Cache Admission for Content Delivery
(NetAI@SIGCOMM 2019).

Planet Labs. 2024. Planet Launches High-Resolution Pelican-2 Satellite, 36 Su-
perDoves. https://www.planet.com/pulse/planet-launches-high-resolution-

pelican-2-satellite-36-superdoves/

Dominic Laniewski, Eric Lanfer, Bernd Meijerink, Roland van Rijswijk-Deij, and
Nils Aschenbruck. 2024. WetLinks: A Large-Scale Longitudinal Starlink Dataset
with Contiguous Weather Data (TMA 2024).

[34] James Larisch, Timothy Alberdingk Thijm, Suleman Ahmad, Peter Wu, Tom

Arnfeld, and Marwan Fayed. 2024. Topaz: Declarative and verifiable authoritative
DNS at CDN-scale (SIGCOMM 2024).

Yuanjie Li, Hewu Li, Wei Liu, Lixin Liu, Wei Zhao, Yimei Chen, Jianping Wu,
Qian Wu, Jun Liu, Zeqi Lai, and Han Qiu. 2023. A Networking Perspective on
Starlink’s Self-Driving LEO Mega-Constellation (MobiCom 2023).

Bruce M Maggs and Ramesh K Sitaraman. 2015. Algorithmic nuggets in content
delivery. ACM SIGCOMM Computer Communication Review (2015).

Michael Kan. 2021. Starlink’s Laser System Is Beaming 42 Million GB of Data
Per Day. https://www.pcmag.com/news/starlinks-laser-system-is-beaming-42-
million-gb- of-data-per-day.

Microsoft. 2025. CosmicBeats-Simulator.
CosmicBeats-Simulator

Mike Puchol. 2025. starlink.sx. https://starlink.sx/.

Nitinder Mohan, Andrew E. Ferguson, Hendrik Cech, Rohan Bose, Prakita Rayyan
Renatin, Mahesh K. Marina, and Jorg Ott. 2024. A Multifaceted Look at Starlink
Performance (WWW 2024).

NASA. 2023. High-Performance Spaceflight Computing (HPSC).
https://www.nasa.gov/game-changing-development-projects/high-
performance-spaceflight-computing-hpsc/

Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. 2010. The Akamai network:
a platform for high-performance internet applications. ACM SIGOPS Oper. Syst.

https://github.com/microsoft/

Rev. (2010).

Oneweb. 2025. Oneweb. https://oneweb.net/.

Anirudh Sabnis and Ramesh K. Sitaraman. 2021. TRAGEN: A Synthetic Trace
Generator for Realistic Cache Simulations (IMC 2021).

Anirudh Sabnis and Ramesh K. Sitaraman. 2022. JEDI: Model-driven trace gener-
ation for cache simulations (IMC 2022).

Fethi Sazoglu, Berkant Cambazoglu, Rifat Ozcan, Ismail Altingévde, and Ozgiir
Ulusoy. 2013. A financial cost metric for result caching (SIGIR 2013).

Kyle Schomp, Onkar Bhardwaj, Eymen Kurdoglu, Mashooq Muhaimen, and
Ramesh K. Sitaraman. 2020. Akamai DNS: Providing Authoritative Answers to
the World’s Queries (SIGCOMM 2020).

Jayanth Shenoy, Om Chabra, Tusher Chakraborty, Suraj Jog, Deepak Vasisth,
and Ranveer Chandra. 2024. CosMAC: Constellation-Aware Medium Access and
Scheuduling for IoT Satellites (MobiCom 2024).

Zhenyu Song, Daniel S. Berger, Kai Li, and Wyatt Lloyd. 2020. Learning Relaxed
Belady for Content Distribution Network Caching (NSDI 2020).

SpaceX. 2022. Tweet from SpaceX 1M users. https://x.com/SpaceX/status/
1604872936976154624

Starlink. 2021. Petition of Starlink Services, LLC For Designation
as an Eligible Telecommunications Carrier. https://pdfhost.io/v/
BnYWSR~wq_Starlink_Services_LLC_Application_for_ETC_Designation.
Starlink. 2024. Direct to Cell. https://www.starlink.com/business/direct-to-cell.
Starlink. 2024. Starlink coverage expanded to new regions! https://x.com/Starlink/
status/1839424733198344617.

Starlink. 2025. Starlink. https://www.starlink.com/us.

Starlink. 2025. Starlink Technology. https://www.starlink.com/us/technology.
StarlinkUsers. 2025. Tweet from Starlink 4M users. https://x.com/Starlink/status/
1839424733198344617

Kalika Suksomboon, Saran Tarnoi, Yusheng Ji, Michihiro Koibuchi, Ken-
suke Fukuda, Shunji Abe, Nakamura Motonori, Michihiro Aoki, Shi-
geo Urushidani, and Shigeki Yamada. 2013. PopCache: Cache more
or less based on content popularity for information-centric networking
(IEEE Conference on Local Computer Networks 2013).

Aditya Sundarrajan, Mingdong Feng, Mangesh Kasbekar, and Ramesh K Sitara-
man. 2017. Footprint Descriptors: Theory and Practice of Cache Provisioning in
a Global CDN (CoNEXT 2018).

Aditya Sundarrajan, Mangesh Kasbekar, Ramesh K. Sitaraman, and Samta Shukla.
2020. Midgress-aware traffic provisioning for content delivery (ATC 2020).
Mercury Systems. 2023. Mercury Systems Ships First Space-Qualified Commercial
Solid-State Data Recorder. https://ir.mrcy.com/news-releases/news-release-
details/mercury-systems- ships-first-space-qualified-commercial- solid

Aryan Taneja, Debopam Bhattacherjee, Saikat Guha, and Venkata N. Padman-
abhan. 2023. On viewing SpaceX Starlink through the Social Media Lens.
https://arxiv.org/abs/2307.13441.

Aryan Taneja, Rahul Bothra, Debopam Bhattacherjee, Rohan Gandhi, Venkata N.
Padmanabhan, Ranjita Bhagwan, Nagarajan Natarajan, Saikat Guha, and Ross
Cutler. 2023. Don’t Forget the User: It’s Time to Rethink Network Measurements
(HotNets 2023).

Qingqing Tang, Zesong Fei, Bin Li, and Zhu Han. 2021. Computation Offloading in
LEO Satellite Networks With Hybrid Cloud and Edge Computing. IEEE Internet

of Things Journal (2021).

https://www.businessinsider.com/elon-musk-starlink-satellites-internet
https://www.businessinsider.com/elon-musk-starlink-satellites-internet
https://celestrak.org/
https://twiki.cern.ch/twiki/pub/HEPIX/TechwatchNetwork/HtwNetworkDocuments/white-paper-c11-741490.pdf
https://twiki.cern.ch/twiki/pub/HEPIX/TechwatchNetwork/HtwNetworkDocuments/white-paper-c11-741490.pdf
https://www.citizen.digital/tech/starlink-pauses-new-subscriptions-in-nairobi-cites-network-overload-n352395?utm_medium=Social&utm_source=Twitter#Echobox=1730728917
https://www.citizen.digital/tech/starlink-pauses-new-subscriptions-in-nairobi-cites-network-overload-n352395?utm_medium=Social&utm_source=Twitter#Echobox=1730728917
https://www.citizen.digital/tech/starlink-pauses-new-subscriptions-in-nairobi-cites-network-overload-n352395?utm_medium=Social&utm_source=Twitter#Echobox=1730728917
https://developers.cloudflare.com/reference-architecture/architectures/cdn/
https://radar.cloudflare.com/traffic/as14593
https://radar.cloudflare.com/traffic/as14593
https://cloud.google.com/cdn/docs/overview
https://cloud.google.com/cdn/docs/overview
https://cloud.google.com/media-cdn/docs/overview
https://cloud.google.com/media-cdn/docs/overview
https://www.planet.com/pulse/planet-launches-high-resolution-pelican-2-satellite-36-superdoves/
https://www.planet.com/pulse/planet-launches-high-resolution-pelican-2-satellite-36-superdoves/
https://www.pcmag.com/news/starlinks-laser-system-is-beaming-42-million-gb-of-data-per-day
https://www.pcmag.com/news/starlinks-laser-system-is-beaming-42-million-gb-of-data-per-day
https://github.com/microsoft/CosmicBeats-Simulator
https://github.com/microsoft/CosmicBeats-Simulator
https://starlink.sx/
https://www.nasa.gov/game-changing-development-projects/high-performance-spaceflight-computing-hpsc/
https://www.nasa.gov/game-changing-development-projects/high-performance-spaceflight-computing-hpsc/
https://oneweb.net/
https://x.com/SpaceX/status/1604872936976154624
https://x.com/SpaceX/status/1604872936976154624
https://pdfhost.io/v/BnYWSR~wq_Starlink_Services_LLC_Application_for_ETC_Designation
https://pdfhost.io/v/BnYWSR~wq_Starlink_Services_LLC_Application_for_ETC_Designation
https://www.starlink.com/business/direct-to-cell
https://x.com/Starlink/status/1839424733198344617
https://x.com/Starlink/status/1839424733198344617
https://www.starlink.com/us
https://www.starlink.com/us/technology
https://x.com/Starlink/status/1839424733198344617
https://x.com/Starlink/status/1839424733198344617
https://ir.mrcy.com/news-releases/news-release-details/mercury-systems-ships-first-space-qualified-commercial-solid
https://ir.mrcy.com/news-releases/news-release-details/mercury-systems-ships-first-space-qualified-commercial-solid
https://arxiv.org/abs/2307.13441

[64] Bill Tao, Om Chabra, Ishani Janveja, Indranil Gupta, and Deepak Vasisht. 2024. A Appendlx

Known Knowns and Unknowns: Near-realtime Earth Observation Via Query j . .)
Bifurcation in Serval (NSDI 2024). Appendices are supporting material that has not been peer-reviewed.
Bill Tao, Maleeha Masood, Indranil Gupta, and Deepak Vasisht. 2023. Trans-

mitting, Fast and Slow: Scheduling Satellite Traffic through Space and Time

(MobiCom 2023).

Shubham Tiwari, Saksham Bhushan, Aryan Taneja, Mohamed Kassem, Cheng .

Luo, Cong Zhou, Zhiyuan He, Aravindh Raman, Nishanth Sastry, Lili Qiu, and Al Algorlthm Of trace generator

Debopam Bhattacherjee. 2023. T3P: Demystifying Low-Earth Orbit Satellite

[65

[66

Broadband. https://arxiv.org/abs/2310.11835. Algorithm 1: Correlated Trace Generation

[67] Ruben Torres, Alessandro Finamore, Jin Ryong Kim, Marco Mellia, Maurizio M P r oa X
Munafo, and Sanjay Rao. 2011. Dissecting video server selection strategies in the 1 Input: n pFDs = {<A1’ P1 > P1 >’ EEEE) </1n) Pn’ Pn > }’ correlation
YouTube CDN (ICDCS 2011). distribution P¢(py, . . ., pn, 2), trace length N;

[68] Deepak Vasisht, Jayanth Shenoy, and Ranveer Chandra. 2021. L2D2: low latency R
distributed downlink for LEO satellites (SIGCOMM 2021). 2 Output: n synthetic traces {II;};

[69] Mike Wall. 2024. AI in Space: NVIDIA GPU Heads to Orbit on SpaceX’s 3 Phase 1: Initia]izing

Transporter-11 Mission. https://www.space.com/ai-nvidia- gpu-spacex-launch-
transporter-11

Ruolin Xing, Mengwei Xu, Ao Zhou, Qing Li, Yiran Zhang, Feng Qian, and
Shangguang Wang. 2024. Deciphering the Enigma of Satellite Computing with
COTS Devices: Measurement and Analysis (MobiCom 2024).

Juncheng Yang, Anirudh Sabnis, Daniel S. Berger, K. V. Rashmi, and Ramesh K.
Sitaraman. 2022. C2DN: How to Harness Erasure Codes at the Edge for Efficient
Content Delivery (NSDI 2022).

'

Compute P! (s|p, z) ¥ pFDs;
Initialize empty lists C; V pFDs;
Compute largest finite stack distance C]*** V pFD ;

[70

o @

[71

N

request_cnt = {}, objID = 0;
while any(C;.size < C™*) do

o

[72] Li Yuanjie, Liu Lixin, Li Hewu, Liu Wei, Chen Yimei, Zhao Wei, Wu Jianping, Wu 9 Samp]e Pls-- P2 from P€;
Qian, Liu Jun, and Lai Zeqi. 2024. Stable Hierarchical Routing for Operational
LEO Networks (MobiCom 2024). 10 forall pi#0 do
[73] Xiao Zhang, Tanmoy Sen, Zheyuan Zhang, Tim April, Balakrishnan Chan- 11 Add (ObjID, i, Z) to Cj;
drasekaran, David Choffnes, Bruce M Maggs, Haiying Shen, Ramesh K Sitaraman, 12 Ci.size += z-
and Xiaowei Yang. 2021. Anyopt: Predicting and optimizing ip anycast perfor- L ’
mance (SIGCOMM 2021). 13 end
[74] Yazhuo Zhang, Juncheng Yang, Yao Yue, Ymir Vigfusson, and K.V. Rashmi. 2024. 1 obiID += 1:
SIEVE is Simpler than LRU: an Efficient Turn-Key Eviction Algorithm for Web) ’
Caches (NSDI 2024). 15 end
[75] Behrouz Zolfaghari, Gautam Srivastava, Swapnoneel Roy, Hamid R. Nemati,

Fatemeh Afghah, Takeshi Koshiba, Abolfazl Razi, Khodakhast Bibak, Pinaki 16 Phase 2: Synthetlc Generation

Mitra, and Brijesh Kumar Rai. 2020. Content Delivery Networks: State of the Art, 17 II; = @ for all i, iter = 0;
Trends, and Future Roadmap. ACM Comput. Surv. (2020). 18 Initialize reqRateCounter|i] to 0, load reqRate[i] ¥ pFD ;
19 while counter < N do

20 forall i do
21 if ;eqRateCOunter[i] > 0 then
22 Pop first object {0;4,0p,02) in C; and append to
II; 5
23 request_cnt[i][o;q] += 1;
21 if 0, = request_cnt[i][o;4] then
25 Sample new objects like initialization phase;
26 else
27 Sample stack distance s from P" (s|op, 0);
28 Insert o to location j in C; such that
Zk<j Ok, 23
29 end
30 reqRateCounter|[i] —=1;
31 end
32 reqRateCounter|[i] += reqRate[i];
33 end
34 counter +=1;
35 end

36 Assign timestamps to the traces;
37 return {I1;} ;

A.2 Properties of Synthetic Traces

In this section, we show results from simulations of the StarCDN-
Fetch architecture using synthetic and production traces.

961

https://arxiv.org/abs/2310.11835
https://www.space.com/ai-nvidia-gpu-spacex-launch-transporter-11
https://www.space.com/ai-nvidia-gpu-spacex-launch-transporter-11

1o 1o Fig. 13c and Fig. 13d show that difference in the measured cache
gos 208 hit rates between the two traces is small. This provides further evi-
€06 E dence that the synthetic traces can be used in lieu of the production
zo. % :
= £ traces for our evaluation.

7 04 204
~ 02 ~—e— Production trace 0.2 —e— Production trace
—=~— Synthetic trace —=~— Synthetic trace
0 200 400 600 800 1000 0 200 400 600 800 1000

Cache size (GB) Cache size (GB)

(a) Request hit rate of two traces in terres- (b) Byte hit rate of two traces in terrestrial
trial cache emulation. cache emulation.

1.0 1o

208 =

T =

g 2

206 =3

] P

=]

Z 04 E

g g

g &

0.2 —e— Production trace 0.2 —e— Production trace

—— Synthetic trace —— Synthetic trace
00 20 40 60 80 100 00 20 40 60 80 100
Cache size (GB)

Cache size (GB)

(c) Request hit rate of two traces in StarCDN- (d) Byte hit rate of two traces in StarCDN-
Fetch emulation. Fetch emulation.

Figure 13: Hit rate comparison of production and synthetic traces in
evaluation benchmarks in §5.

962

	Abstract
	1 Introduction
	2 Background
	2.1 LEO Satellite Networks
	2.2 Content Delivery Networks
	2.3 Feasibility of In-space Compute and Storage

	3 StarCDN System Architecture
	3.1 A Naive Design and Resulting Challenges
	3.2 StarCDN: Consistent Hashing to Reduce Redundant Caching
	3.3 StarCDN: Relayed Fetch to Counter Orbital Motion
	3.4 StarCDN: Robustness to Unavailability

	4 SpaceGEN: Synthetic Trace Generator for Satellite-based CDNs
	4.1 Traffic Models for Satellite-based CDNs
	4.2 Trace Generation Algorithm
	4.3 Properties of the Synthetic Trace

	5 Empirical Evaluation
	5.1 Experimental Setup
	5.2 Cache Hit Rate
	5.3 Latency
	5.4 Fault Tolerance
	5.5 Evaluation of Web and Download Delivery

	6 Related Work
	6.1 LEO Satellite Networks
	6.2 CDNs and Caching Policies

	7 Limitations and Future Work
	8 Conclusion
	References
	A Appendix
	A.1 Algorithm of trace generator
	A.2 Properties of Synthetic Traces

